Matching Items (3)
Filtering by

Clear all filters

150534-Thumbnail Image.png
Description
Different logic-based knowledge representation formalisms have different limitations either with respect to expressivity or with respect to computational efficiency. First-order logic, which is the basis of Description Logics (DLs), is not suitable for defeasible reasoning due to its monotonic nature. The nonmonotonic formalisms that extend first-order logic, such as circumscription

Different logic-based knowledge representation formalisms have different limitations either with respect to expressivity or with respect to computational efficiency. First-order logic, which is the basis of Description Logics (DLs), is not suitable for defeasible reasoning due to its monotonic nature. The nonmonotonic formalisms that extend first-order logic, such as circumscription and default logic, are expressive but lack efficient implementations. The nonmonotonic formalisms that are based on the declarative logic programming approach, such as Answer Set Programming (ASP), have efficient implementations but are not expressive enough for representing and reasoning with open domains. This dissertation uses the first-order stable model semantics, which extends both first-order logic and ASP, to relate circumscription to ASP, and to integrate DLs and ASP, thereby partially overcoming the limitations of the formalisms. By exploiting the relationship between circumscription and ASP, well-known action formalisms, such as the situation calculus, the event calculus, and Temporal Action Logics, are reformulated in ASP. The advantages of these reformulations are shown with respect to the generality of the reasoning tasks that can be handled and with respect to the computational efficiency. The integration of DLs and ASP presented in this dissertation provides a framework for integrating rules and ontologies for the semantic web. This framework enables us to perform nonmonotonic reasoning with DL knowledge bases. Observing the need to integrate action theories and ontologies, the above results are used to reformulate the problem of integrating action theories and ontologies as a problem of integrating rules and ontologies, thus enabling us to use the computational tools developed in the context of the latter for the former.
ContributorsPalla, Ravi (Author) / Lee, Joohyung (Thesis advisor) / Baral, Chitta (Committee member) / Kambhampati, Subbarao (Committee member) / Lifschitz, Vladimir (Committee member) / Arizona State University (Publisher)
Created2012
153583-Thumbnail Image.png
Description
When scientific software is written to specify processes, it takes the form of a workflow, and is often written in an ad-hoc manner in a dynamic programming language. There is a proliferation of legacy workflows implemented by non-expert programmers due to the accessibility of dynamic languages. Unfortunately, ad-hoc workflows lack

When scientific software is written to specify processes, it takes the form of a workflow, and is often written in an ad-hoc manner in a dynamic programming language. There is a proliferation of legacy workflows implemented by non-expert programmers due to the accessibility of dynamic languages. Unfortunately, ad-hoc workflows lack a structured description as provided by specialized management systems, making ad-hoc workflow maintenance and reuse difficult, and motivating the need for analysis methods. The analysis of ad-hoc workflows using compiler techniques does not address dynamic languages - a program has so few constrains that its behavior cannot be predicted. In contrast, workflow provenance tracking has had success using run-time techniques to record data. The aim of this work is to develop a new analysis method for extracting workflow structure at run-time, thus avoiding issues with dynamics.

The method captures the dataflow of an ad-hoc workflow through its execution and abstracts it with a process for simplifying repetition. An instrumentation system first processes the workflow to produce an instrumented version, capable of logging events, which is then executed on an input to produce a trace. The trace undergoes dataflow construction to produce a provenance graph. The dataflow is examined for equivalent regions, which are collected into a single unit. The workflow is thus characterized in terms of its treatment of an input. Unlike other methods, a run-time approach characterizes the workflow's actual behavior; including elements which static analysis cannot predict (for example, code dynamically evaluated based on input parameters). This also enables the characterization of dataflow through external tools.

The contributions of this work are: a run-time method for recording a provenance graph from an ad-hoc Python workflow, and a method to analyze the structure of a workflow from provenance. Methods are implemented in Python and are demonstrated on real world Python workflows. These contributions enable users to derive graph structure from workflows. Empowered by a graphical view, users can better understand a legacy workflow. This makes the wealth of legacy ad-hoc workflows accessible, enabling workflow reuse instead of investing time and resources into creating a workflow.
ContributorsAcűna, Ruben (Author) / Bazzi, Rida (Thesis advisor) / Lacroix, Zoé (Thesis advisor) / Candan, Kasim (Committee member) / Arizona State University (Publisher)
Created2015
154648-Thumbnail Image.png
Description
Knowledge representation and reasoning is a prominent subject of study within the field of artificial intelligence that is concerned with the symbolic representation of knowledge in such a way to facilitate automated reasoning about this knowledge. Often in real-world domains, it is necessary to perform defeasible reasoning when representing default

Knowledge representation and reasoning is a prominent subject of study within the field of artificial intelligence that is concerned with the symbolic representation of knowledge in such a way to facilitate automated reasoning about this knowledge. Often in real-world domains, it is necessary to perform defeasible reasoning when representing default behaviors of systems. Answer Set Programming is a widely-used knowledge representation framework that is well-suited for such reasoning tasks and has been successfully applied to practical domains due to efficient computation through grounding--a process that replaces variables with variable-free terms--and propositional solvers similar to SAT solvers. However, some domains provide a challenge for grounding-based methods such as domains requiring reasoning about continuous time or resources.

To address these domains, there have been several proposals to achieve efficiency through loose integrations with efficient declarative solvers such as constraint solvers or satisfiability modulo theories solvers. While these approaches successfully avoid substantial grounding, due to the loose integration, they are not suitable for performing defeasible reasoning on functions. As a result, this expressive reasoning on functions must either be performed using predicates to simulate the functions or in a way that is not elaboration tolerant. Neither compromise is reasonable; the former suffers from the grounding bottleneck when domains are large as is often the case in real-world domains while the latter necessitates encodings to be non-trivially modified for elaborations.

This dissertation presents a novel framework called Answer Set Programming Modulo Theories (ASPMT) that is a tight integration of the stable model semantics and satisfiability modulo theories. This framework both supports defeasible reasoning about functions and alleviates the grounding bottleneck. Combining the strengths of Answer Set Programming and satisfiability modulo theories enables efficient continuous reasoning while still supporting rich reasoning features such as reasoning about defaults and reasoning in domains with incomplete knowledge. This framework is realized in two prototype implementations called MVSM and ASPMT2SMT, and the latter was recently incorporated into a non-monotonic spatial reasoning system. To define the semantics of this framework, we extend the first-order stable model semantics by Ferraris, Lee and Lifschitz to allow "intensional functions" and provide analyses of the theoretical properties of this new formalism and on the relationships between this and existing approaches.
ContributorsBartholomew, Michael James (Author) / Lee, Joohyung (Thesis advisor) / Bazzi, Rida (Committee member) / Colbourn, Charles (Committee member) / Fainekos, Georgios (Committee member) / Lifschitz, Vladimir (Committee member) / Arizona State University (Publisher)
Created2016