Matching Items (4)
Filtering by

Clear all filters

152336-Thumbnail Image.png
Description
Flow measurement has always been one of the most critical processes in many industrial and clinical applications. The dynamic behavior of flow helps to define the state of a process. An industrial example would be that in an aircraft, where the rate of airflow passing the aircraft is used to

Flow measurement has always been one of the most critical processes in many industrial and clinical applications. The dynamic behavior of flow helps to define the state of a process. An industrial example would be that in an aircraft, where the rate of airflow passing the aircraft is used to determine the speed of the plane. A clinical example would be that the flow of a patient's breath which could help determine the state of the patient's lungs. This project is focused on the flow-meter that are used for airflow measurement in human lungs. In order to do these measurements, resistive-type flow-meters are commonly used in respiratory measurement systems. This method consists of passing the respiratory flow through a fluid resistive component, while measuring the resulting pressure drop, which is linearly related to volumetric flow rate. These types of flow-meters typically have a low frequency response but are adequate for most applications, including spirometry and respiration monitoring. In the case of lung parameter estimation methods, such as the Quick Obstruction Method, it becomes important to have a higher frequency response in the flow-meter so that the high frequency components in the flow are measurable. The following three types of flow-meters were: a. Capillary type b. Screen Pneumotach type c. Square Edge orifice type To measure the frequency response, a sinusoidal flow is generated with a small speaker and passed through the flow-meter that is connected to a large, rigid container. True flow is proportional to the derivative of the pressure inside the container. True flow is then compared with the measured flow, which is proportional to the pressure drop across the flow-meter. In order to do the characterization, two LabVIEW data acquisition programs have been developed, one for transducer calibration, and another one that records flow and pressure data for frequency response testing of the flow-meter. In addition, a model that explains the behavior exhibited by the flow-meter has been proposed and simulated. This model contains a fluid resistor and inductor in series. The final step in this project was to approximate the frequency response data to the developed model expressed as a transfer function.
ContributorsHu, Jianchen (Author) / Macia, Narciso (Thesis advisor) / Pollat, Scott (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2013
156043-Thumbnail Image.png
Description
Complex electronic systems include multiple power domains and drastically varying dynamic power consumption patterns, requiring the use of multiple power conversion and regulation units. High frequency switching converters have been gaining prominence in the DC-DC converter market due to smaller solution size (higher power density) and higher efficiency. As the

Complex electronic systems include multiple power domains and drastically varying dynamic power consumption patterns, requiring the use of multiple power conversion and regulation units. High frequency switching converters have been gaining prominence in the DC-DC converter market due to smaller solution size (higher power density) and higher efficiency. As the filter components become smaller in value and size, they are unfortunately also subject to higher process variations and worse degradation profiles jeopardizing stable operation of the power supply. This dissertation presents techniques to track changes in the dynamic loop characteristics of the DC-DC converters without disturbing the normal mode of operation. A digital pseudo-noise (PN) based stimulus is used to excite the DC-DC system at various circuit nodes to calculate the corresponding closed-loop impulse response. The test signal energy is spread over a wide bandwidth and the signal analysis is achieved by correlating the PN input sequence with the disturbed output generated, thereby

accumulating the desired behavior over time. A mixed-signal cross-correlation circuit is used to derive on-chip impulse responses, with smaller memory and lower computational requirement in comparison to a digital correlator approach. Model reference based parametric and non-parametric techniques are discussed to analyze the impulse response results in both time and frequency domain. The proposed techniques can extract open-loop phase margin and closed-loop unity-gain frequency within 5.2% and 4.1% error, respectively, for the load current range of 30-200mA. Converter parameters such as natural frequency (ω_n ), quality factor (Q), and center frequency (ω_c ) can be estimated within 3.6%, 4.7%, and 3.8% error respectively, over load inductance of 4.7-10.3µH, and filter capacitance of 200-400nF. A 5-MHz switching frequency, 5-8.125V input voltage range, voltage-mode controlled DC-DC buck converter is designed for the proposed built-in self-test (BIST) analysis. The converter output voltage range is 3.3-5V and the supported maximum

load current is 450mA. The peak efficiency of the converter is 87.93%. The proposed converter is fabricated on a 0.6µm 6-layer-metal Silicon-On-Insulator (SOI) technology with a die area of 9mm^2 . The area impact due to the system identification blocks including related I/O structures is 3.8% and they consume 530µA quiescent current during operation.
ContributorsBeohar, Navankur (Author) / Bakkaloglu, Bertan (Thesis advisor) / Ozev, Sule (Committee member) / Ayyanar, Raja (Committee member) / Seo, Jae-Sun (Committee member) / Arizona State University (Publisher)
Created2017
158684-Thumbnail Image.png
Description
The advances of Deep Learning (DL) achieved recently have successfully demonstrated its great potential of surpassing or close to human-level performance across multiple domains. Consequently, there exists a rising demand to deploy state-of-the-art DL algorithms, e.g., Deep Neural Networks (DNN), in real-world applications to release labors from repetitive work. On

The advances of Deep Learning (DL) achieved recently have successfully demonstrated its great potential of surpassing or close to human-level performance across multiple domains. Consequently, there exists a rising demand to deploy state-of-the-art DL algorithms, e.g., Deep Neural Networks (DNN), in real-world applications to release labors from repetitive work. On the one hand, the impressive performance achieved by the DNN normally accompanies with the drawbacks of intensive memory and power usage due to enormous model size and high computation workload, which significantly hampers their deployment on the resource-limited cyber-physical systems or edge devices. Thus, the urgent demand for enhancing the inference efficiency of DNN has also great research interests across various communities. On the other hand, scientists and engineers still have insufficient knowledge about the principles of DNN which makes it mostly be treated as a black-box. Under such circumstance, DNN is like "the sword of Damocles" where its security or fault-tolerance capability is an essential concern which cannot be circumvented.

Motivated by the aforementioned concerns, this dissertation comprehensively investigates the emerging efficiency and security issues of DNNs, from both software and hardware design perspectives. From the efficiency perspective, as the foundation technique for efficient inference of target DNN, the model compression via quantization is elaborated. In order to maximize the inference performance boost, the deployment of quantized DNN on the revolutionary Computing-in-Memory based neural accelerator is presented in a cross-layer (device/circuit/system) fashion. From the security perspective, the well known adversarial attack is investigated spanning from its original input attack form (aka. Adversarial example generation) to its parameter attack variant.
Contributorshe, zhezhi (Author) / Fan, Deliang (Thesis advisor) / Chakrabarti, Chaitali (Committee member) / Cao, Yu (Committee member) / Seo, Jae-Sun (Committee member) / Arizona State University (Publisher)
Created2020
158769-Thumbnail Image.png
Description
The rapid advancement of Deep Neural Networks (DNNs), computing, and sensing technology has enabled many new applications, such as the self-driving vehicle, the surveillance drone, and the robotic system. Compared to conventional edge devices (e.g. cell phone or smart home devices), these emerging devices are required to deal with much

The rapid advancement of Deep Neural Networks (DNNs), computing, and sensing technology has enabled many new applications, such as the self-driving vehicle, the surveillance drone, and the robotic system. Compared to conventional edge devices (e.g. cell phone or smart home devices), these emerging devices are required to deal with much more complicated and dynamic situations in real-time with bounded computation resources. However, there are several challenges, including but not limited to efficiency, real-time adaptation, model stability, and automation of architecture design.

To tackle the challenges mentioned above, model plasticity and stability are leveraged to achieve efficient and online deep learning, especially in the scenario of learning streaming data at the edge:

First, a dynamic training scheme named Continuous Growth and Pruning (CGaP) is proposed to compress the DNNs through growing important parameters and pruning unimportant ones, achieving up to 98.1% reduction in the number of parameters.

Second, this dissertation presents Progressive Segmented Training (PST), which targets catastrophic forgetting problems in continual learning through importance sampling, model segmentation, and memory-assisted balancing. PST achieves state-of-the-art accuracy with 1.5X FLOPs reduction in the complete inference path.

Third, to facilitate online learning in real applications, acquisitive learning (AL) is further proposed to emphasize both knowledge inheritance and acquisition: the majority of the knowledge is first pre-trained in the inherited model and then adapted to acquire new knowledge. The inherited model's stability is monitored by noise injection and the landscape of the loss function, while the acquisition is realized by importance sampling and model segmentation. Compared to a conventional scheme, AL reduces accuracy drop by >10X on CIFAR-100 dataset, with 5X reduction in latency per training image and 150X reduction in training FLOPs.

Finally, this dissertation presents evolutionary neural architecture search in light of model stability (ENAS-S). ENAS-S uses a novel fitness score, which addresses not only the accuracy but also the model stability, to search for an optimal inherited model for the application of continual learning. ENAS-S outperforms hand-designed DNNs when learning from a data stream at the edge.

In summary, in this dissertation, several algorithms exploiting model plasticity and model stability are presented to improve the efficiency and accuracy of deep neural networks, especially for the scenario of continual learning.
ContributorsDu, Xiaocong (Author) / Cao, Yu (Thesis advisor) / Seo, Jae-Sun (Committee member) / Chakrabarti, Chaitali (Committee member) / Fan, Deliang (Committee member) / Arizona State University (Publisher)
Created2020