Matching Items (2)
Filtering by

Clear all filters

152383-Thumbnail Image.png
Description
Data centers connect a larger number of servers requiring IO and switches with low power and delay. Virtualization of IO and network is crucial for these servers, which run virtual processes for computing, storage, and apps. We propose using the PCI Express (PCIe) protocol and a new PCIe switch fabric

Data centers connect a larger number of servers requiring IO and switches with low power and delay. Virtualization of IO and network is crucial for these servers, which run virtual processes for computing, storage, and apps. We propose using the PCI Express (PCIe) protocol and a new PCIe switch fabric for IO and switch virtualization. The switch fabric has little data buffering, allowing up to 512 physical 10 Gb/s PCIe2.0 lanes to be connected via a switch fabric. The switch is scalable with adapters running multiple adaptation protocols, such as Ethernet over PCIe, PCIe over Internet, or FibreChannel over Ethernet. Such adaptation protocols allow integration of IO often required for disjoint datacenter applications such as storage and networking. The novel switch fabric based on space-time carrier sensing facilitates high bandwidth, low power, and low delay multi-protocol switching. To achieve Terabit switching, both time (high transmission speed) and space (multi-stage interconnection network) technologies are required. In this paper, we present the design of an up to 256 lanes Clos-network of multistage crossbar switch fabric for PCIe system. The switch core consists of 48 16x16 crossbar sub-switches. We also propose a new output contention resolution algorithm utilizing an out-of-band protocol of Request-To-Send (RTS), Clear-To-Send (CTS) before sending PCIe packets through the switch fabric. Preliminary power and delay estimates are provided.
ContributorsLuo, Haojun (Author) / Hui, Joseph (Thesis advisor) / Song, Hongjiang (Committee member) / Reisslein, Martin (Committee member) / Zhang, Yanchao (Committee member) / Arizona State University (Publisher)
Created2013
149439-Thumbnail Image.png
Description
Ethernet switching is provided to interconnect multiple Ethernets for the exchange of Ethernet data frames. Most Ethernet switches require data buffering and Ethernet signal regeneration at the switch which incur the problems of substantial signal processing, power consumption, and transmission delay. To solve these problems, a cross bar architecture switching

Ethernet switching is provided to interconnect multiple Ethernets for the exchange of Ethernet data frames. Most Ethernet switches require data buffering and Ethernet signal regeneration at the switch which incur the problems of substantial signal processing, power consumption, and transmission delay. To solve these problems, a cross bar architecture switching system for 10GBASE-T Ethernet is proposed in this thesis. The switching system is considered as the first step of implementing a multi-stage interconnection network to achieve Terabit or Petabit switching. By routing customized headers in capsulated Ethernet frames in an out-of-band control method, the proposed switching system would transmit the original Ethernet frames with little processing, thereby makes the system appear as a simple physical medium for different hosts. The switching system is designed and performed by using CMOS technology.
ContributorsLuo, Haojun (Author) / Hui, Joseph (Thesis advisor) / Zhang, Junshan (Committee member) / Reisslein, Martin (Committee member) / Arizona State University (Publisher)
Created2010