Matching Items (4)

Filtering by

Clear all filters

153990-Thumbnail Image.png

Flora of the upper Verde River, Arizona

Description

The Upper Verde River of central Arizona flows through a landscape of complex geology at the meeting of seven biotic communities and three physiographic provinces. This has resulted in notably

The Upper Verde River of central Arizona flows through a landscape of complex geology at the meeting of seven biotic communities and three physiographic provinces. This has resulted in notably diverse flora and fauna and a hub of rare and endemic plant species. The river has sustained cultures since pre-history, however current regional water use is predicted to diminish streamflow over the next century. Prior to this project, no floristic inventory had been conducted along any section of the Verde. The purpose of this study was to develop a Flora of the Upper Verde River, with the goals of documenting rare and endemic species, the composition and abundance of wetland plants, and the factors shaping plant diversity in the region.

I made a total of 1856 collections and reviewed past collections to produce a checklist of 729 vascular plant taxa in 403 genera and 98 families. The most species-rich family is the Poaceae, followed by Asteraceae and Fabaceae. The flora includes 159 wetland taxa, 47 endemics, and 26 taxa of conservation concern, eight of which are Federally listed. Several new populations were found in these categories and of rarely-collected taxa including one state record, three county records and several range extensions. I report on the local status of several endemics, wetland taxa with limited distributions, and relict populations of a tepary bean (Phaseolus acutifolius) that were likely transported to the region and cultivated by pre-Columbian cultures. I categorize thirteen distinct plant communities, the most abundant being Pinyon/Juniper Woodland, Chihuahuan/Apacherian Scrub, and Riparian Deciduous Forest.

Four primary factors influence floristic diversity of the Upper Verde region: 1) a location at the junction of three physiographic and floristic provinces—represented by co-occurrence of species with affinities to the Sonoran, Intermountain and Madrean regions, 2) geologic diversity—as distinct groups of species are associated with particular geologic types, 3) topographic and habitat complexity—allowing species adapted to disparate environments to co-occur, and 4) human introductions—since over 15% of the flora is composed of introduced species from Eurasia and several taxa were introduced to the region and cultivated by pre-Columbian cultures.

Contributors

Agent

Created

Date Created
  • 2015

149430-Thumbnail Image.png

Plant community composition along the historic Verde River irrigation system: does hydrochory play a role?

Description

As an industrial society, humans have increasingly separated agricultural processes from natural ecosystems. Many areas of the Southwestern US, however, maintain traditional practices that link agricultural systems to the

As an industrial society, humans have increasingly separated agricultural processes from natural ecosystems. Many areas of the Southwestern US, however, maintain traditional practices that link agricultural systems to the natural environment. One such practice, diverting river water into fields via earthen irrigation canals, allows ditch water to recharge groundwater and riparian vegetation to prosper along canal banks. As there is growing interest in managing landscapes for multiple ecosystem services, this study was undertaken to determine if irrigation canals function as an extension of the riparian corridor. I was specifically interested in determining if the processes within semi-arid streams that drive riparian plant community structure are manifested in earthen irrigation ditches. I examined herbaceous and woody vegetation along the middle Verde River, AZ, USA and three adjacent irrigation ditches across six months. I also collected sieved hydrochores--seeds dispersing through water--within ditches and the river twelve times. Results indicate that ditch vegetation was similar to streamside river vegetation in abundance (cover and basal area) due to surface water availability but more diverse than river streamside vegetation due to high heterogeneity. Compositionally, herbaceous vegetation along the ditch was most similar to the river banks, while low disturbance fostered woody vegetation along the ditches similar to high floodplain and river terrace vegetation. Hydrochore richness and abundance within the river was dependent on seasonality and stream discharge, but these relationships were dampened in the ditches. Species-specific strategies of hydrochory, however, did emerge in both systems. Strategies include pulse species, which disperse via hydrochory in strict accordance with their restricted dispersal windows, constant species, which are year round hydrochores, and combination species, which show characteristics of both. There was high overlap in the composition of hydrochores in the two systems, with obligate wetland species abundant in both. Upland species were more seasonally constant and abundant in the ditch water than the river. The consistency of river processes and similarity of vegetation suggest that earthen irrigation ditches do function as an extension of the riparian corridor. Thus, these man-made irrigation ditches should be considered by stakeholders for their multiple ecosystem services.

Contributors

Agent

Created

Date Created
  • 2010

150330-Thumbnail Image.png

Effluent-dominated waterways in the southwestern United States: advancing water policy through ecological analysis

Description

Over the past century in the southwestern United States human actions have altered hydrological processes that shape riparian ecosystems. One change, release of treated wastewater into waterways, has created perennial

Over the past century in the southwestern United States human actions have altered hydrological processes that shape riparian ecosystems. One change, release of treated wastewater into waterways, has created perennial base flows and increased nutrient availability in ephemeral or intermittent channels. While there are benefits to utilizing treated wastewater for environmental flows, there are numerous unresolved ecohydrological issues regarding the efficacy of effluent to sustain groundwater-dependent riparian ecosystems. This research examined how nutrient-rich effluent, released into waterways with varying depths to groundwater, influences riparian plant community development. Statewide analysis of spatial and temporal patterns of effluent generation and release revealed that hydrogeomorphic setting significantly influences downstream riparian response. Approximately 70% of effluent released is into deep groundwater systems, which produced the lowest riparian development. A greenhouse study assessed how varying concentrations of nitrogen and phosphorus, emulating levels in effluent, influenced plant community response. With increasing nitrogen concentrations, vegetation emerging from riparian seed banks had greater biomass, reduced species richness, and greater abundance of nitrophilic species. The effluent-dominated Santa Cruz River in southern Arizona, with a shallow groundwater upper reach and deep groundwater lower reach, served as a study river while the San Pedro River provided a control. Analysis revealed that woody species richness and composition were similar between the two systems. Hydric pioneers (Populus fremontii, Salix gooddingii) were dominant at perennial sites on both rivers. Nitrophilic species (Conium maculatum, Polygonum lapathifolium) dominated herbaceous plant communities and plant heights were greatest in effluent-dominated reaches. Riparian vegetation declined with increasing downstream distance in the upper Santa Cruz, while patterns in the lower Santa Cruz were confounded by additional downstream agricultural input and a channelized floodplain. There were distinct longitudinal and lateral shifts toward more xeric species with increasing downstream distance and increasing lateral distance from the low-flow channel. Patterns in the upper and lower Santa Cruz reaches indicate that water availability drives riparian vegetation outcomes below treatment facilities. Ultimately, this research informs decision processes and increases adaptive capacity for water resources policy and management through the integration of ecological data in decision frameworks regarding the release of effluent for environmental flows.

Contributors

Agent

Created

Date Created
  • 2011

150280-Thumbnail Image.png

How will hydrologic change alter riparian plant communities of the arid and semi-arid Southwest?: the problem approached from two perspectives

Description

Climate change has the potential to affect vegetation via changes in temperature and precipitation. In the semi-arid southwestern United States, heightened temperatures will likely lead to accelerated groundwater pumping to

Climate change has the potential to affect vegetation via changes in temperature and precipitation. In the semi-arid southwestern United States, heightened temperatures will likely lead to accelerated groundwater pumping to meet human needs, and altered storm patterns may lead to changes in flood regimes. All of these hydrologic changes have the potential to alter riparian vegetation. This research, consisting of two papers, examines relationships between hydrology and riparian vegetation along the Verde River in central Arizona, from applied and theoretical perspectives. One paper investigates how dominance of tree and shrub species and cover of certain functional groups change along hydrologic gradients. The other paper uses the Verde River flora along with that river's flood and moisture gradients to answer the question of whether functional groups can be defined universally. Drying of the Verde River would lead to a shift from cottonwood-willow streamside forest to more drought adapted desert willow or saltcedar, a decline in streamside marsh species, and decreased species richness. Effects drying will have on one dominant forest tree, velvet ash, is unclear. Increase in the frequency of large floods would potentially increase forest density and decrease average tree age and diameter. Correlations between functional traits of Verde River plants and hydrologic gradients are consistent with "leaf economics," or the axis of resource capture, use, and release, as the primary strategic trade-off for plants. This corresponds to the competitor-stress tolerator gradient in Grime's life history strategy theory. Plant height was also a strong indicator of hydrologic condition, though it is not clear from the literature if plant height is independent enough of leaf characteristics on a global scale to be considered a second axis. Though the ecohydrologic relationships are approached from different perspectives, the results of the two papers are consistent if interpreted together. The species that are currently dominant in the near-channel Verde River floodplain are tall, broad-leaf trees, and the species that are predicted to become more dominant in the case of the river drying are shorter trees or shrubs with smaller leaves. These results have implications for river and water management, as well as theoretical ecology.

Contributors

Agent

Created

Date Created
  • 2011