Matching Items (2)

152490-Thumbnail Image.png

Influence of grounded back electrode on AC creepage breakdown characteristics

Description

This thesis focuses on the influence of a grounded back electrode on the breakdown characteristics. The back electrode is an electrode which attaches at the back side of solid insulation. Insulation with grounded back electrode is a common type of

This thesis focuses on the influence of a grounded back electrode on the breakdown characteristics. The back electrode is an electrode which attaches at the back side of solid insulation. Insulation with grounded back electrode is a common type of insulation which is adopted in many high voltage power devices. While most of the power equipment work under AC voltage, most of the research on back electrode is focused on the DC voltage. Therefore, it is necessary to deeply investigate the influence of the back electrode under AC applied voltage. To investigate the influence of back electrode, the research is separated into two phases, which are the experiment phase and the electric field analysis phase. In the experiments, the breakdown voltages for both with and without back electrode are obtained. The experimental results indicate that the grounded back electrode does have impact on the breakdown characteristics. Then with the breakdown voltage, based on real experiment model, the electric field is analyzed using computer software. From the field simulation result, it is found that the back electrode also influences the electric field distribution. The inter relationship between the electric field and breakdown voltage is the key to explain all the results and phenomena observed during the experiment. Additionally, the influence of insulation barrier on breakdown is also investigated. Compared to the case without ground electrode, inserting a barrier into the gap can more significantly improve breakdown voltage.

Contributors

Agent

Created

Date Created
2014

149405-Thumbnail Image.png

Breakdown voltage of compressed sulfur hexafluoride (SF6) at very low frequency / low frequency (30 kHz)

Description

The U.S. Navy is interested in evaluating the dielectric performance of SF6 at 30 kHz in order to develop optimal bushing designs and to ensure reliable operation for the Very Low Frequency/ Low Frequency (VLF/LF) transmitting stations. The breakdown experiments

The U.S. Navy is interested in evaluating the dielectric performance of SF6 at 30 kHz in order to develop optimal bushing designs and to ensure reliable operation for the Very Low Frequency/ Low Frequency (VLF/LF) transmitting stations. The breakdown experiments of compressed SF6 at 30 kHz in the pressure range of 1-5 atm were conducted in both the uniform field (plane-plane gap) and the non-uniform field (rod-plane gap). To understand the impact of pressure on the breakdown voltage of SF6 at VLF/LF, empirical models of the dielectric strength of SF6 were derived based on the experimental data and regression analysis. The pressure correction factors that present the correlation between the breakdown voltage of SF6 at VLF/LF and that of air at 50/60 Hz were calculated. These empirical models provide an effective way to use the extensively documented breakdown voltage data of air at 60 Hz to evaluate the dielectric performance of SF6 for the design of VLF/LF high voltage equipment. In addition, several breakdown experiments and similar regression analysis of air at 30 kHz were conducted as well. A ratio of the breakdown voltage of SF6 to that of air at VLF/LF was calculated, from which a significant difference between the uniform gap and the non-uniform gap was observed. All the models and values provide useful information to evaluate and predict the performance of the bushings in practice.

Contributors

Agent

Created

Date Created
2010