Matching Items (4)
Filtering by

Clear all filters

152331-Thumbnail Image.png
Description
Digital to analog converters (DACs) find widespread use in communications equipment. Most commercially available DAC's which are intended to be used in transmitter applications come in a dual configuration for carrying the in phase (I) and quadrature (Q) data and feature on chip digital mixing. Digital mixing offers many benefits

Digital to analog converters (DACs) find widespread use in communications equipment. Most commercially available DAC's which are intended to be used in transmitter applications come in a dual configuration for carrying the in phase (I) and quadrature (Q) data and feature on chip digital mixing. Digital mixing offers many benefits concerning I and Q matching but has one major drawback; the update rate of the DAC must be higher than the intermediate frequency (IF) which is most commonly a factor of 4. This drawback motivates the need for interpolation so that a low update rate can be used for components preceding the DACs. In this thesis the design of an interpolating DAC integrated circuit (IC) to be used in a transmitter application for generating a 100MHz IF is presented. Many of the transistor level implementations are provided. The tradeoffs in the design are analyzed and various options are discussed. This thesis provides a basic foundation for designing an IC of this nature and will give the reader insight into potential areas of further research. At the time of this writing the chip is in fabrication therefore this document does not contain test results.
ContributorsNixon, Cliff (Author) / Bakkaloglu, Bertan (Thesis advisor) / Arizona State University (Publisher)
Created2013
152924-Thumbnail Image.png
Description
Modern day deep sub-micron SOC architectures often demand very low supply noise levels. As supply voltage decreases with decreasing deep sub-micron gate length, noise on the power supply starts playing a dominant role in noise-sensitive analog blocks, especially high precision ADC, PLL, and RF SOC's. Most handheld and portable applications

Modern day deep sub-micron SOC architectures often demand very low supply noise levels. As supply voltage decreases with decreasing deep sub-micron gate length, noise on the power supply starts playing a dominant role in noise-sensitive analog blocks, especially high precision ADC, PLL, and RF SOC's. Most handheld and portable applications and highly sensitive medical instrumentation circuits tend to use low noise regulators as on-chip or on board power supply. Nonlinearities associated with LNA's, mixers and oscillators up-convert low frequency noise with the signal band. Specifically, synthesizer and TCXO phase noise, LNA and mixer noise figure, and adjacent channel power ratios of the PA are heavily influenced by the supply noise and ripple. This poses a stringent requirement on a very low noise power supply with high accuracy and fast transient response. Low Dropout (LDO) regulators are preferred over switching regulators for these applications due to their attractive low noise and low ripple features. LDO's shield sensitive blocks from high frequency fluctuations on the power supply while providing high accuracy, fast response supply regulation.

This research focuses on developing innovative techniques to reduce the noise of any generic wideband LDO, stable with or without load capacitor. The proposed techniques include Switched RC Filtering to reduce the Bandgap Reference noise, Current Mode Chopping to reduce the Error Amplifier noise & MOS-R based RC filter to reduce the noise due to bias current. The residual chopping ripple was reduced using a Switched Capacitor notch filter. Using these techniques, the integrated noise of a wideband LDO was brought down to 15µV in the integration band of 10Hz to 100kHz. These techniques can be integrated into any generic LDO without any significant area overhead.
ContributorsMagod Ramakrishna, Raveesh (Author) / Bakkaloglu, Bertan (Thesis advisor) / Garrity, Douglas (Committee member) / Kitchen, Jennifer (Committee member) / Arizona State University (Publisher)
Created2014
153036-Thumbnail Image.png
Description
High speed current-steering DACs with high linearity are needed in today's applications such as wired and wireless communications, instrumentation, radar, and other direct digital synthesis (DDS) applications. However, a trade-off exists between the speed and resolution of Nyquist rate current-steering DACs. As the resolution increases, more transistor area

High speed current-steering DACs with high linearity are needed in today's applications such as wired and wireless communications, instrumentation, radar, and other direct digital synthesis (DDS) applications. However, a trade-off exists between the speed and resolution of Nyquist rate current-steering DACs. As the resolution increases, more transistor area is required to meet matching requirements for optimal linearity and thus, the overall speed of the DAC is limited.

In this thesis work, a 12-bit current-steering DAC was designed with current sources scaled below the required matching size to decrease the area and increase the overall speed of the DAC. By scaling the current sources, however, errors due to random mismatch between current sources will arise and additional calibration hardware is necessary to ensure 12-bit linearity. This work presents how to implement a self-calibration DAC that works to fix amplitude errors while maintaining a lower overall area. Additionally, the DAC designed in this thesis investigates the implementation feasibility of a data-interleaved architecture. Data interleaving can increase the total bandwidth of the DACs by 2 with an increase in SQNR by an additional 3 dB.

The final results show that the calibration method can effectively improve the linearity of the DAC. The DAC is able to run up to 400 MSPS frequencies with a 75 dB SFDR performance and above 87 dB SFDR performance at update rates of 200 MSPS.
ContributorsJankunas, Benjamin (Author) / Bakkaloglu, Bertan (Thesis advisor) / Kitchen, Jennifer (Committee member) / Ozev, Sule (Committee member) / Arizona State University (Publisher)
Created2014
153765-Thumbnail Image.png
Description
Modern Complex electronic system include multiple power domains and drastically varying power consumption patterns, requiring the use of multiple power conversion and regulation units. High frequency switching converters have been gaining prominence in the DC-DC converter market due to their high efficiency. Unfortunately, they are all subject to higher process

Modern Complex electronic system include multiple power domains and drastically varying power consumption patterns, requiring the use of multiple power conversion and regulation units. High frequency switching converters have been gaining prominence in the DC-DC converter market due to their high efficiency. Unfortunately, they are all subject to higher process variations jeopardizing stable operation of the power supply.

This research mainly focus on the technique to track changes in the dynamic loop characteristics of the DC-DC converters without disturbing the normal mode of operation using a white noise based excitation and correlation. White noise excitation is generated via pseudo random disturbance at reference and PWM input of the converter with the test signal being spread over a wide bandwidth, below the converter noise and ripple floor. Test signal analysis is achieved by correlating the pseudo-random input sequence with the output response and thereby accumulating the desired behavior over time and pulling it above the noise floor of the measurement set-up. An off-the shelf power converter, LM27402 is used as the DUT for the experimental verification. Experimental results show that the proposed technique can estimate converter's natural frequency and Q-factor within ±2.5% and ±0.7% error margin respectively, over changes in load inductance and capacitance.
ContributorsBakliwal, Priyanka (Author) / Ozev, Sule (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Kitchen, Jennifer (Committee member) / Arizona State University (Publisher)
Created2015