Matching Items (4)
Filtering by

Clear all filters

150094-Thumbnail Image.png
Description
The high penetration of photovoltaic (PV) both at the utility and at the distribu-tion levels, has raised concerns about the reliability of grid-tied inverters of PV power systems. Inverters are generally considered as the weak link in PV power systems. The lack of a dedicated qualification/reliability standard for PV inverters

The high penetration of photovoltaic (PV) both at the utility and at the distribu-tion levels, has raised concerns about the reliability of grid-tied inverters of PV power systems. Inverters are generally considered as the weak link in PV power systems. The lack of a dedicated qualification/reliability standard for PV inverters is a main barrier in realizing higher level of confidence in reliability. Development of a well-accepted design qualification standard specifically for PV inverters will help pave the way for significant improvement in reliability and performance of inverters across the entire industry. The existing standards for PV inverters such as UL 1741 and IEC 62109-1 primarily focus on safety. IEC 62093 discusses inverter qualification but it includes all the balance of sys-tem components and therefore not specific to PV inverters. There are other general stan-dards for distributed generators including the IEEE1547 series of standards which cover major concerns like utility integration but they are not dedicated to PV inverters and are not written from a design qualification point of view. In this thesis, some of the potential requirements for a design qualification standard for PV inverters are addressed. The IEC 62093 is considered as a guideline and the possible inclusions in the framework for a dedicated design qualification standard of PV inverter are discussed. The missing links in existing PV inverter related standards are identified by performing gap analysis. Dif-ferent requirements of small residential inverters compared to large utility-scale systems, and the emerging requirements on grid support features are also considered. Electric stress test is found to be the key missing link and one of the electric stress tests, the surge withstand test is studied in detail. The use of the existing standards for surge withstand test of residential scale PV inverters is investigated and a method to suitably adopt these standards is proposed. The proposed method is studied analytically and verified using simulation. A design criterion for choosing the switch ratings of the inverter that can per-form reliably under the surge environment is derived.
ContributorsAlampoondi Venkataramanan, Sai Balasubramanian (Author) / Ayyanar, Raja (Thesis advisor) / Vittal, Vijay (Committee member) / Heydt, Gerald (Committee member) / Arizona State University (Publisher)
Created2011
153878-Thumbnail Image.png
Description
The utilization of power cables is increasing with the development of renewable energy and the maintenance replacement of old overhead power lines. Therefore, effective monitoring and accurate fault location for power cables are very important for the sake of a stable power supply.

The recent technologies for power cable diagnosis

The utilization of power cables is increasing with the development of renewable energy and the maintenance replacement of old overhead power lines. Therefore, effective monitoring and accurate fault location for power cables are very important for the sake of a stable power supply.

The recent technologies for power cable diagnosis and temperature monitoring system are described including their intrinsic limitations for cable health assessment. Power cable fault location methods are reviewed with two main categories: off-line and on-line data based methods.

As a diagnostic and fault location approach, a new passive methodology is introduced. This methodology is based on analyzing the resonant frequencies of the transfer function between the input and output of the power cable system. The equivalent pi model is applied to the resonant frequency calculation for the selected underground power cable transmission system.

The characteristics of the resonant frequencies are studied by analytical derivations and PSCAD simulations. It is found that the variation of load magnitudes and change of positive power factors (i.e., inductive loads) do not affect resonant frequencies significantly, but there is considerable movement of resonant frequencies under change of negative power factors (i.e., capacitive loads).

Power cable fault conditions introduce new resonant frequencies in accordance with fault positions. Similar behaviors of the resonant frequencies are shown in a transformer (TR) connected power cable system with frequency shifts caused by the TR impedance.

The resonant frequencies can be extracted by frequency analysis of power signals and the inherent noise in these signals plays a key role to measure the resonant frequencies. Window functions provide an effective tool for improving resonant frequency discernment. The frequency analysis is implemented on noise laden PSCAD simulation signals and it reveals identical resonant frequency characteristics with theoretical studies.

Finally, the noise levels of real voltage and current signals, which are acquired from an operating power plant, are estimated and the resonant frequencies are extracted by applying window functions, and these results prove that the resonant frequency can be used as an assessment for the internal changes in power cable parameters such as defects and faults.
ContributorsKim, Youngdeug (Author) / Holbert, Keith Edwin (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Heydt, Gerald (Committee member) / Karady, George G. (Committee member) / Arizona State University (Publisher)
Created2015
154405-Thumbnail Image.png
Description
With the growing importance of underground power systems and the need for greater reliability of the power supply, cable monitoring and accurate fault location detection has become an increasingly important issue. The presence of inherent random fluctuations in power system signals can be used to extract valuable information about the

With the growing importance of underground power systems and the need for greater reliability of the power supply, cable monitoring and accurate fault location detection has become an increasingly important issue. The presence of inherent random fluctuations in power system signals can be used to extract valuable information about the condition of system equipment. One such component is the power cable, which is the primary focus of this research.

This thesis investigates a unique methodology that allows online monitoring of an underground power cable. The methodology analyzes conventional power signals in the frequency domain to monitor the condition of a power cable.

First, the proposed approach is analyzed theoretically with the help of mathematical computations. Frequency domain analysis techniques are then used to compute the power spectral density (PSD) of the system signals. The importance of inherent noise in the system, a key requirement of this methodology, is also explained. The behavior of resonant frequencies, which are unique to every system, are then analyzed under different system conditions with the help of mathematical expressions.

Another important aspect of this methodology is its ability to accurately estimate cable fault location. The process is online and hence does not require the system to be disconnected from the grid. A single line to ground fault case is considered and the trend followed by the resonant frequencies for different fault positions is observed.

The approach is initially explained using theoretical calculations followed by simulations in MATLAB/Simulink. The validity of this technique is proved by comparing the results obtained from theory and simulation to actual measurement data.
ContributorsGovindarajan, Sudarshan (Author) / Holbert, Keith E. (Thesis advisor) / Heydt, Gerald (Committee member) / Karady, George G. (Committee member) / Arizona State University (Publisher)
Created2016
152216-Thumbnail Image.png
Description
This dissertation presents a novel current source converter topology that is primarily intended for single-phase photovoltaic (PV) applications. In comparison with the existing PV inverter technology, the salient features of the proposed topology are: a) the low frequency (double of line frequency) ripple that is common to single-phase inverters is

This dissertation presents a novel current source converter topology that is primarily intended for single-phase photovoltaic (PV) applications. In comparison with the existing PV inverter technology, the salient features of the proposed topology are: a) the low frequency (double of line frequency) ripple that is common to single-phase inverters is greatly reduced; b) the absence of low frequency ripple enables significantly reduced size pass components to achieve necessary DC-link stiffness and c) improved maximum power point tracking (MPPT) performance is readily achieved due to the tightened current ripple even with reduced-size passive components. The proposed topology does not utilize any electrolytic capacitors. Instead an inductor is used as the DC-link filter and reliable AC film capacitors are utilized for the filter and auxiliary capacitor. The proposed topology has a life expectancy on par with PV panels. The proposed modulation technique can be used for any current source inverter where an unbalanced three-phase operation is desires such as active filters and power controllers. The proposed topology is ready for the next phase of microgrid and power system controllers in that it accepts reactive power commands. This work presents the proposed topology and its working principle supported by with numerical verifications and hardware results. Conclusions and future work are also presented.
ContributorsBush, Craig R (Author) / Ayyanar, Raja (Thesis advisor) / Karam, Lina (Committee member) / Heydt, Gerald (Committee member) / Karady, George G. (Committee member) / Arizona State University (Publisher)
Created2013