Matching Items (4)
Filtering by

Clear all filters

152012-Thumbnail Image.png
Description
As renewable energy becomes more prevalent in transmission and distribution systems, it is vital to understand the uncertainty and variability that accompany these resources. Microgrids have the potential to mitigate the effects of resource uncertainty. With the ability to exist in either an islanded mode or maintain connections with the

As renewable energy becomes more prevalent in transmission and distribution systems, it is vital to understand the uncertainty and variability that accompany these resources. Microgrids have the potential to mitigate the effects of resource uncertainty. With the ability to exist in either an islanded mode or maintain connections with the main-grid, a microgrid can increase reliability, defer T&D; infrastructure and effectively utilize demand response. This study presents a co-optimization framework for a microgrid with solar photovoltaic generation, emergency generation, and transmission switching. Today unit commitment models ensure reliability with deterministic criteria, which are either insufficient to ensure reliability or can degrade economic efficiency for a microgrid that uses a large penetration of variable renewable resources. A stochastic mixed integer linear program for day-ahead unit commitment is proposed to account for uncertainty inherent in PV generation. The model incorporates the ability to trade energy and ancillary services with the main-grid, including the designation of firm and non-firm imports, which captures the ability to allow for reserve sharing between the two systems. In order to manage the computational complexities, a Benders' decomposition approach is utilized. The commitment schedule was validated with solar scenario analysis, i.e., Monte-Carlo simulations are conducted to test the proposed dispatch solution. For this test case, there were few deviations to power imports, 0.007% of solar was curtailed, no load shedding occurred in the main-grid, and 1.70% load shedding occurred in the microgrid.
ContributorsHytowitz, Robin Broder (Author) / Hedman, Kory W (Thesis advisor) / Heydt, Gerald T (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2013
153066-Thumbnail Image.png
Description
There has been a considerable growth in distributed photovoltaic (PV) genera-tion and its integration in electric power distribution systems. This has led to a change in the distribution system infrastructure. Properly planned distributed gen-eration can offer a variety of benefits for system operations and enhance opera-tional performance of the distribution

There has been a considerable growth in distributed photovoltaic (PV) genera-tion and its integration in electric power distribution systems. This has led to a change in the distribution system infrastructure. Properly planned distributed gen-eration can offer a variety of benefits for system operations and enhance opera-tional performance of the distribution system. However, high penetration of PV resources can give rise to operating conditions which do not arise in traditional systems and one of the potential issues that needs to be addressed involves impact on power quality of the system with respect to the spectral distortion in voltages and currents.

The test bed feeder model representing a real operational distribution feeder is developed in OpenDSS and the feeder modeling takes into consideration the ob-jective of analysis and frequency of interest. Extensive metering infrastructure and measurements are utilized for validation of the model at harmonic frequencies. The harmonic study performed is divided into two sections: study of impact of non-linear loads on total harmonic voltage and current distortions and study of impact of PV resources on high frequency spectral distortion in voltages and cur-rents. The research work incorporates different harmonic study methodologies such as harmonic and high frequency power flow, and frequency scan study. The general conclusions are presented based on the simulation results and in addition, scope for future work is discussed.
ContributorsJoshi, Titiksha Vjay (Author) / Heydt, Gerald T (Thesis advisor) / Ayyanar, Raja (Committee member) / Vittal, Vijay (Committee member) / Arizona State University (Publisher)
Created2014
149510-Thumbnail Image.png
Description
Optical Instrument Transformers (OIT) have been developed as an alternative to traditional instrument transformers (IT). The question "Can optical instrument transformers substitute for the traditional transformers?" is the main motivation of this study. Finding the answer for this question and developing complete models are the contributions of this work. Dedicated

Optical Instrument Transformers (OIT) have been developed as an alternative to traditional instrument transformers (IT). The question "Can optical instrument transformers substitute for the traditional transformers?" is the main motivation of this study. Finding the answer for this question and developing complete models are the contributions of this work. Dedicated test facilities are developed so that the steady state and transient performances of analog outputs of a magnetic current transformer (CT) and a magnetic voltage transformer (VT) are compared with that of an optical current transformer (OCT) and an optical voltage transformer (OVT) respectively. Frequency response characteristics of OIT outputs are obtained. Comparison results show that OITs have a specified accuracy of 0.3% in all cases. They are linear, and DC offset does not saturate the systems. The OIT output signal has a 40~60 μs time delay, but this is typically less than the equivalent phase difference permitted by the IEEE and IEC standards for protection applications. Analog outputs have significantly higher bandwidths (adjustable to 20 to 40 kHz) than the IT. The digital output signal bandwidth (2.4 kHz) of an OCT is significantly lower than the analog signal bandwidth (20 kHz) due to the sampling rates involved. The OIT analog outputs may have significant white noise of 6%, but the white noise does not affect accuracy or protection performance. Temperatures up to 50oC do not adversely affect the performance of the OITs. Three types of models are developed for analog outputs: analog, digital, and complete models. Well-known mathematical methods, such as network synthesis and Jones calculus methods are applied. The developed models are compared with experiment results and are verified with simulation programs. Results show less than 1.5% for OCT and 2% for OVT difference and that the developed models can be used for power system simulations and the method used for the development can be used to develop models for all other brands of optical systems. The communication and data transfer between the all-digital protection systems is investigated by developing a test facility for all digital protection systems. Test results show that different manufacturers' relays and transformers based on the IEC standard can serve the power system successfully.
ContributorsKucuksari, Sadik (Author) / Karady, George G. (Thesis advisor) / Heydt, Gerald T (Committee member) / Holbert, Keith E. (Committee member) / Ayyanar, Raja (Committee member) / Farmer, Richard (Committee member) / Arizona State University (Publisher)
Created2010
149394-Thumbnail Image.png
Description
Market acceptability of distributed energy resource (DER) technologies and the gradual and consistent increase in their depth of penetration have generated significant interest over the past few years. In particular, in Arizona and several other states there has been a substantial in-crease in distributed photovoltaic (PV) generation interfaced to the

Market acceptability of distributed energy resource (DER) technologies and the gradual and consistent increase in their depth of penetration have generated significant interest over the past few years. In particular, in Arizona and several other states there has been a substantial in-crease in distributed photovoltaic (PV) generation interfaced to the power distribution systems, and is expected to continue to grow at a significant rate. This has made integration, control and optimal operation of DER units a main area of focus in the design and operation of distribution systems. Grid-connected, distributed PV covers a wide range of power levels ranging from small, single phase residential roof-top systems to large three-phase, multi-megawatt systems. The focus of this work is on analyzing large, three-phase systems, with the power distribution system of the Arizona State University (ASU) Tempe campus used as the test bed for analysis and simulation. The Tempe campus of ASU has presently 4.5 MW of installed PV capacity, with another 4.5 MW expected to be added by 2011, which will represent about 22% of PV penetration. The PV systems are interfaced to the grid invariably by a power electronic inverter. Many of the important characteristics of the PV generation are influenced by the design and performance of the inverter, and hence suitable models of the inverter are needed to analyze PV systems. Several models of distributed generation (DG), including switching and average models, suitable for different study objectives, and different control modes of the inverter have been described in this thesis. A critical function of the inverters is to quickly detect and eliminate unintentional islands during grid failure. In this thesis, many active anti-islanding techniques with voltage and frequency positive feedback have been studied. Effectiveness of these techniques in terms of the tripping times specified in IEEE Std. 1547 for interconnecting distributed resources with electric power systems has been analyzed. The impact of distributed PV on the voltage profile of a distribution system has been ana-lyzed with ASU system as the test bed using power systems analysis tools namely PowerWorld and CYMDIST. The present inverters complying with IEEE 1547 do not regulate the system vol-tage. However, the future inverters especially at higher power levels are expected to perform sev-eral grid support functions including voltage regulation and reactive power support. Hence, the impact of inverters with the reactive power support capabilities is also analyzed. Various test sce-narios corresponding to different grid conditions are simulated and it is shown that distributed PV improves the voltage profile of the system. The improvements are more significant when the PV generators are capable of reactive power support. Detailed short circuit analyses are also per-formed on the system, and the impact of distributed PV on the fault current magnitude, with and without reactive power injection, have been studied.
ContributorsNarayanan, Anand (Author) / Ayyanar, Raja (Thesis advisor) / Vittal, Vijay (Committee member) / Heydt, Gerald T (Committee member) / Arizona State University (Publisher)
Created2010