Matching Items (4)

152460-Thumbnail Image.png

Total dose simulation for high reliability electronics

Description

New technologies enable the exploration of space, high-fidelity defense systems, lighting fast intercontinental communication systems as well as medical technologies that extend and improve patient lives. The basis for these

New technologies enable the exploration of space, high-fidelity defense systems, lighting fast intercontinental communication systems as well as medical technologies that extend and improve patient lives. The basis for these technologies is high reliability electronics devised to meet stringent design goals and to operate consistently for many years deployed in the field. An on-going concern for engineers is the consequences of ionizing radiation exposure, specifically total dose effects. For many of the different applications, there is a likelihood of exposure to radiation, which can result in device degradation and potentially failure. While the total dose effects and the resulting degradation are a well-studied field and methodologies to help mitigate degradation have been developed, there is still a need for simulation techniques to help designers understand total dose effects within their design. To that end, the work presented here details simulation techniques to analyze as well as predict the total dose response of a circuit. In this dissertation the total dose effects are broken into two sub-categories, intra-device and inter-device effects in CMOS technology. Intra-device effects degrade the performance of both n-channel and p-channel transistors, while inter-device effects result in loss of device isolation. In this work, multiple case studies are presented for which total dose degradation is of concern. Through the simulation techniques, the individual device and circuit responses are modeled post-irradiation. The use of these simulation techniques by circuit designers allow predictive simulation of total dose effects, allowing focused design changes to be implemented to increase radiation tolerance of high reliability electronics.

Contributors

Agent

Created

Date Created
  • 2014

153386-Thumbnail Image.png

Methodical design approaches to multiple node collection robustness for flip-flop soft error mitigation

Description

The space environment comprises cosmic ray particles, heavy ions and high energy electrons and protons. Microelectronic circuits used in space applications such as satellites and space stations are prone to

The space environment comprises cosmic ray particles, heavy ions and high energy electrons and protons. Microelectronic circuits used in space applications such as satellites and space stations are prone to upsets induced by these particles. With transistor dimensions shrinking due to continued scaling, terrestrial integrated circuits are also increasingly susceptible to radiation upsets. Hence radiation hardening is a requirement for microelectronic circuits used in both space and terrestrial applications.

This work begins by exploring the different radiation hardened flip-flops that have been proposed in the literature and classifies them based on the different hardening techniques.

A reduced power delay element for the temporal hardening of sequential digital circuits is presented. The delay element single event transient tolerance is demonstrated by simulations using it in a radiation hardened by design master slave flip-flop (FF). Using the proposed delay element saves up to 25% total FF power at 50% activity factor. The delay element is used in the implementation of an 8-bit, 8051 designed in the TSMC 130 nm bulk CMOS.

A single impinging ionizing radiation particle is increasingly likely to upset multiple circuit nodes and produce logic transients that contribute to the soft error rate in most modern scaled process technologies. The design of flip-flops is made more difficult with increasing multi-node charge collection, which requires that charge storage and other sensitive nodes be separated so that one impinging radiation particle does not affect redundant nodes simultaneously. We describe a correct-by-construction design methodology to determine a-priori which hardened FF nodes must be separated, as well as a general interleaving scheme to achieve this separation. We apply the methodology to radiation hardened flip-flops and demonstrate optimal circuit physical organization for protection against multi-node charge collection.

Finally, the methodology is utilized to provide critical node separation for a new hardened flip-flop design that reduces the power and area by 31% and 35% respectively compared to a temporal FF with similar hardness. The hardness is verified and compared to other published designs via the proposed systematic simulation approach that comprehends multiple node charge collection and tests resiliency to upsets at all internal and input nodes. Comparison of the hardness, as measured by estimated upset cross-section, is made to other published designs. Additionally, the importance of specific circuit design aspects to achieving hardness is shown.

Contributors

Agent

Created

Date Created
  • 2015

149486-Thumbnail Image.png

An innovative radiation hardened by design flip-flop

Description

Radiation hardening by design (RHBD) has become a necessary practice when creating circuits to operate within radiated environments. While employing RHBD techniques has tradeoffs between size, speed and power, novel

Radiation hardening by design (RHBD) has become a necessary practice when creating circuits to operate within radiated environments. While employing RHBD techniques has tradeoffs between size, speed and power, novel designs help to minimize these penalties. Space radiation is the primary source of radiation errors in circuits and two types of single event effects, single event upsets (SEU), and single event transients (SET) are increasingly becoming a concern. While numerous methods currently exist to nullify SEUs and SETs, special consideration to the techniques of temporal hardening and interlocking are explored in this thesis. Temporal hardening mitigates both SETs and SEUs by spacing critical nodes through the use of delay elements, thus allowing collected charge to be removed. Interlocking creates redundant nodes to rectify charge collection on one single node. This thesis presents an innovative, temporally hardened D flip-flop (TFF). The TFF physical design is laid out in the 130 nm TSMC process in the form of an interleaved multi-bit cell and the circuitry necessary for the flip-flop to be hardened against SETs and SEUs is analyzed with simulations verifying these claims. Comparisons are made to an unhardened D flip-flop through speed, size, and power consumption depicting how the RHBD technique used increases all three over an unhardened flip-flop. Finally, the blocks from both the hardened and the unhardened flip-flops being placed in Synthesis and auto-place and route (APR) design flows are compared through size and speed to show the effects of using the high density multi-bit layout. Finally, the TFF presented in this thesis is compared to two other flip-flops, the majority voter temporal/DICE flip-flop (MTDFF) and the C-element temporal/DICE flip-flop (CTDFF). These circuits are built on the same 130 nm TSMC process as the TFF and then analyzed by the same methods through speed, size, and power consumption and compared to the TFF and unhardened flip-flops. Simulations are completed on the MTDFF and CTDFF to show their strengths against D node SETs and SEUs as well as their weakness against CLK node SETs. Results show that the TFF is faster and harder than both the MTDFF and CTDFF.

Contributors

Agent

Created

Date Created
  • 2010

149389-Thumbnail Image.png

Total dose effects and hardening-by-design methodologies for implantable medical devices

Description

Implantable medical device technology is commonly used by doctors for disease management, aiding to improve patient quality of life. However, it is possible for these devices to be exposed to

Implantable medical device technology is commonly used by doctors for disease management, aiding to improve patient quality of life. However, it is possible for these devices to be exposed to ionizing radiation during various medical therapeutic and diagnostic activities while implanted. This commands that these devices remain fully operational during, and long after, radiation exposure. Many implantable medical devices employ standard commercial complementary metal-oxide-semiconductor (CMOS) processes for integrated circuit (IC) development, which have been shown to degrade with radiation exposure. This necessitates that device manufacturers study the effects of ionizing radiation on their products, and work to mitigate those effects to maintain a high standard of reliability. Mitigation can be completed through targeted radiation hardening by design (RHBD) techniques as not to infringe on the device operational specifications. This thesis details a complete radiation analysis methodology that can be implemented to examine the effects of ionizing radiation on an IC as part of RHBD efforts. The methodology is put into practice to determine the failure mechanism in a charge pump circuit, common in many of today's implantable pacemaker designs, as a case study. Charge pump irradiation data shows a reduction of circuit output voltage with applied dose. Through testing of individual test devices, the response is identified as parasitic inter-device leakage caused by trapped oxide charge buildup in the isolation oxides. A library of compact models is generated to represent isolation oxide parasitics based on test structure data along with 2-Dimensional structure simulation results. The original charge pump schematic is then back-annotated with transistors representative of the parasitic. Inclusion of the parasitic devices in schematic allows for simulation of the entire circuit, accounting for possible parasitic devices activated by radiation exposure. By selecting a compact model for the parasitics generated at a specific dose, the compete circuit response is then simulated at the defined dose. The reduction of circuit output voltage with dose is then re-created in a radiation-enabled simulation validating the analysis methodology.

Contributors

Agent

Created

Date Created
  • 2010