Matching Items (3)
Filtering by

Clear all filters

149894-Thumbnail Image.png
Description
Non-native saltcedar (Tamarix spp.) has invaded many riparian communities and is the third most abundant tree in Southwestern riparian areas. I evaluated lizard populations and microhabitat selection during 2009 and 2010 along the Virgin River in Nevada and Arizona to determine the impact of saltcedar. Along the riparian corridor, I

Non-native saltcedar (Tamarix spp.) has invaded many riparian communities and is the third most abundant tree in Southwestern riparian areas. I evaluated lizard populations and microhabitat selection during 2009 and 2010 along the Virgin River in Nevada and Arizona to determine the impact of saltcedar. Along the riparian corridor, I observed common side-blotched lizards (Uta stansburiana) within two vegetation types: monotypic non-native saltcedar stands or mixed stands of cottonwood (Populus fremontii), willow (Salix spp.), mesquite (Prosopis spp.) and saltcedar. I predicted that population parameters such as body condition, adult to hatchling ratio, abundance, and persistence would vary among vegetation types. Also, I predicted the presence of saltcedar influences how lizards utilize available habitat. Lizard population parameters were obtained from a mark-recapture study in which I captured 233 individual lizards. I examined habitat selection and habitat availability using visual encounter surveys (VES) for lizards and recorded 11 microhabitat variables where 16 lizards were found. I found no significant difference in population parameters between mixed and non-native saltcedar communities. However, population parameters were negatively correlated with canopy cover. I found that lizards selected habitat with low understory and canopy cover regardless of vegetation type. My results indicate that lizards utilize similar structural characteristics in both mixed and non-native vegetation. Understanding impacts of saltcedar on native fauna is important for managers who are tasked with control and management of this non-native species.
ContributorsNielsen, Danny (Author) / Bateman, Heather L. (Thesis advisor) / Miller, William H. (Committee member) / Sullivan, Brian K. (Committee member) / Arizona State University (Publisher)
Created2011
149766-Thumbnail Image.png
Description
Worldwide, riverine floodplains are among the most endangered landscapes. In response to anthropogenic impacts, riverine restoration projects are considerably increasing. However, there is a paucity of information on how riparian rehabilitation activities impact non-avian wildlife communities. I evaluated herpetofauna abundance, species richness, diversity (i.e., Shannon and Simpson indices), species-specific responses,

Worldwide, riverine floodplains are among the most endangered landscapes. In response to anthropogenic impacts, riverine restoration projects are considerably increasing. However, there is a paucity of information on how riparian rehabilitation activities impact non-avian wildlife communities. I evaluated herpetofauna abundance, species richness, diversity (i.e., Shannon and Simpson indices), species-specific responses, and riparian microhabitat characteristics along three reaches (i.e., wildland, urban rehabilitated, and urban disturbed) of the Salt River, Arizona. The surrounding uplands of the two urbanized reaches were dominated by the built environment (i.e., Phoenix metropolitan area). I predicted that greater diversity of microhabitat and lower urbanization would promote herpetofauna abundance, richness, and diversity. In 2010, at each reach, I performed herpetofauna visual surveys five times along eight transects (n=24) spanning the riparian zone. I quantified twenty one microhabitat characteristics such as ground substrate, vegetative cover, woody debris, tree stem density, and plant species richness along each transect. Herpetofauna species richness was the greatest along the wildland reach, and the lowest along the urban disturbed reach. The wildland reach had the greatest diversity indices, and diversity indices of the two urban reaches were similar. Abundance of herpetofauna was approximately six times lower along the urban disturbed reach compared to the two other reaches, which had similar abundances. Principal Component Analysis (PCA) reduced microhabitat variables to five factors, and significant differences among reaches were detected. Vegetation structure complexity, vegetation species richness, as well as densities of Prosopis (mesquite), Salix (willow), Populus (cottonwood), and animal burrows had a positive correlation with at least one of the three herpetofauna community parameter quantified (i.e., herpetofauna abundance, species richness, and diversity indices), and had a positive correlation with at least one herpetofauna species. Overall, rehabilitation activities positively influenced herpetofauna abundance and species richness, whereas urbanization negatively influenced herpetofauna diversity indices. Based on herpetofauna/microhabitat correlations established, I developed recommendations regarding microhabitat features that should be created in order to promote herpetofauna when rehabilitating degraded riparian systems. Recommendations are to plant vegetation of different growth habit, provide woody debris, plant Populus, Salix, and Prosopis of various ages and sizes, and to promote small mammal abundance.
ContributorsBanville, Mélanie Josianne (Author) / Bateman, Heather L (Thesis advisor) / Brady, Ward (Committee member) / Stromberg, Juliet (Committee member) / Arizona State University (Publisher)
Created2011
157978-Thumbnail Image.png
Description
Riparian areas are an important resource, especially in the arid southwest, for many wildlife species. Understanding species occurrence in areas dominated by non-native vegetation is important to determine if management should be implemented. Saltcedar (Tamarix spp.) is one of the most prevalent non-native trees in riparian areas in the southwest

Riparian areas are an important resource, especially in the arid southwest, for many wildlife species. Understanding species occurrence in areas dominated by non-native vegetation is important to determine if management should be implemented. Saltcedar (Tamarix spp.) is one of the most prevalent non-native trees in riparian areas in the southwest United States and can alter vegetation structure, but little is known about how medium and large carnivores use stands of saltcedar. Three riparian forest types make up the San Pedro riparian corridor: non-native saltcedar, native mesquite (Prosopis spp.) bosque, and a mixture of native cottonwood (Populus fremontii) and willow (Salix goodingii) woodlands. My goals were to determine relative use, diversity, and occupancy of medium and large mammals across forest types to evaluate use of the non-native stands. I sampled mammals along approximately 25.7 river kilometers between July 2017 and October 2018, using 18 trail cameras (six per forest type) spaced 1km apart. I summarized environmental variables around the camera sites to relate them to species occupancy and reduced them to 4 components using a Principal Component Analysis (PCA). I observed 14 carnivore species, including bobcat (Lynx rufus), coyote (Canis latrans), and coati (Nasua narica) over 7,692 trap nights. Occupancy of some species may have been influenced by the different components, but models showed high standard errors, making it difficult to draw firm conclusions. Most mammal species used all three forest types at some level and no surveyed forest type was completely avoided or unused. Coyote tended to have greater use in the mesquite forest while canids trended toward greater use in saltcedar forest. Based on two-species occupancy models as well as activity overlap patterns, subordinate species did not appear to avoid dominant species. No species seems significantly affected by non-native saltcedar at this time.
ContributorsHerzog, Cheyenne J (Author) / Bateman, Heather L (Thesis advisor) / Lewis, Jesse (Committee member) / Cunningham, Stan (Committee member) / Arizona State University (Publisher)
Created2019