Matching Items (3)
Filtering by

Clear all filters

151867-Thumbnail Image.png
Description
Automating aspects of biocuration through biomedical information extraction could significantly impact biomedical research by enabling greater biocuration throughput and improving the feasibility of a wider scope. An important step in biomedical information extraction systems is named entity recognition (NER), where mentions of entities such as proteins and diseases are located

Automating aspects of biocuration through biomedical information extraction could significantly impact biomedical research by enabling greater biocuration throughput and improving the feasibility of a wider scope. An important step in biomedical information extraction systems is named entity recognition (NER), where mentions of entities such as proteins and diseases are located within natural-language text and their semantic type is determined. This step is critical for later tasks in an information extraction pipeline, including normalization and relationship extraction. BANNER is a benchmark biomedical NER system using linear-chain conditional random fields and the rich feature set approach. A case study with BANNER locating genes and proteins in biomedical literature is described. The first corpus for disease NER adequate for use as training data is introduced, and employed in a case study of disease NER. The first corpus locating adverse drug reactions (ADRs) in user posts to a health-related social website is also described, and a system to locate and identify ADRs in social media text is created and evaluated. The rich feature set approach to creating NER feature sets is argued to be subject to diminishing returns, implying that additional improvements may require more sophisticated methods for creating the feature set. This motivates the first application of multivariate feature selection with filters and false discovery rate analysis to biomedical NER, resulting in a feature set at least 3 orders of magnitude smaller than the set created by the rich feature set approach. Finally, two novel approaches to NER by modeling the semantics of token sequences are introduced. The first method focuses on the sequence content by using language models to determine whether a sequence resembles entries in a lexicon of entity names or text from an unlabeled corpus more closely. The second method models the distributional semantics of token sequences, determining the similarity between a potential mention and the token sequences from the training data by analyzing the contexts where each sequence appears in a large unlabeled corpus. The second method is shown to improve the performance of BANNER on multiple data sets.
ContributorsLeaman, James Robert (Author) / Gonzalez, Graciela (Thesis advisor) / Baral, Chitta (Thesis advisor) / Cohen, Kevin B (Committee member) / Liu, Huan (Committee member) / Ye, Jieping (Committee member) / Arizona State University (Publisher)
Created2013
154663-Thumbnail Image.png
Description
Text mining of biomedical literature and clinical notes is a very active field of research in biomedical science. Semantic analysis is one of the core modules for different Natural Language Processing (NLP) solutions. Methods for calculating semantic relatedness of two concepts can be very useful in solutions solving different problems

Text mining of biomedical literature and clinical notes is a very active field of research in biomedical science. Semantic analysis is one of the core modules for different Natural Language Processing (NLP) solutions. Methods for calculating semantic relatedness of two concepts can be very useful in solutions solving different problems such as relationship extraction, ontology creation and question / answering [1–6]. Several techniques exist in calculating semantic relatedness of two concepts. These techniques utilize different knowledge sources and corpora. So far, researchers attempted to find the best hybrid method for each domain by combining semantic relatedness techniques and data sources manually. In this work, attempts were made to eliminate the needs for manually combining semantic relatedness methods targeting any new contexts or resources through proposing an automated method, which attempted to find the best combination of semantic relatedness techniques and resources to achieve the best semantic relatedness score in every context. This may help the research community find the best hybrid method for each context considering the available algorithms and resources.
ContributorsEmadzadeh, Ehsan (Author) / Gonzalez, Graciela (Thesis advisor) / Greenes, Robert (Committee member) / Scotch, Matthew (Committee member) / Arizona State University (Publisher)
Created2016
157879-Thumbnail Image.png
Description
Accounting for over a third of all emerging and re-emerging infections, viruses represent a major public health threat, which researchers and epidemiologists across the world have been attempting to contain for decades. Recently, genomics-based surveillance of viruses through methods such as virus phylogeography has grown into a popular tool for

Accounting for over a third of all emerging and re-emerging infections, viruses represent a major public health threat, which researchers and epidemiologists across the world have been attempting to contain for decades. Recently, genomics-based surveillance of viruses through methods such as virus phylogeography has grown into a popular tool for infectious disease monitoring. When conducting such surveillance studies, researchers need to manually retrieve geographic metadata denoting the location of infected host (LOIH) of viruses from public sequence databases such as GenBank and any publication related to their study. The large volume of semi-structured and unstructured information that must be reviewed for this task, along with the ambiguity of geographic locations, make it especially challenging. Prior work has demonstrated that the majority of GenBank records lack sufficient geographic granularity concerning the LOIH of viruses. As a result, reviewing full-text publications is often necessary for conducting in-depth analysis of virus migration, which can be a very time-consuming process. Moreover, integrating geographic metadata pertaining to the LOIH of viruses from different sources, including different fields in GenBank records as well as full-text publications, and normalizing the integrated metadata to unique identifiers for subsequent analysis, are also challenging tasks, often requiring expert domain knowledge. Therefore, automated information extraction (IE) methods could help significantly accelerate this process, positively impacting public health research. However, very few research studies have attempted the use of IE methods in this domain.

This work explores the use of novel knowledge-driven geographic IE heuristics for extracting, integrating, and normalizing the LOIH of viruses based on information available in GenBank and related publications; when evaluated on manually annotated test sets, the methods were found to have a high accuracy and shown to be adequate for addressing this challenging problem. It also presents GeoBoost, a pioneering software system for georeferencing GenBank records, as well as a large-scale database containing over two million virus GenBank records georeferenced using the algorithms introduced here. The methods, database and software developed here could help support diverse public health domains focusing on sequence-informed virus surveillance, thereby enhancing existing platforms for controlling and containing disease outbreaks.
ContributorsTahsin, Tasnia (Author) / Gonzalez, Graciela (Thesis advisor) / Scotch, Matthew (Thesis advisor) / Runger, George C. (Committee member) / Arizona State University (Publisher)
Created2019