Matching Items (8)

153929-Thumbnail Image.png

Smart glove: an assistive device to enhance recovery of hand function during motor rehabilitation

Description

Stroke accounts for high rates of mortality and disability in the United States. It levies great economic burden on the affected subjects, their family and the society at large. Motor

Stroke accounts for high rates of mortality and disability in the United States. It levies great economic burden on the affected subjects, their family and the society at large. Motor impairments after stroke mainly manifest themselves as hemiplegia or hemiparesis in the upper and lower limbs. Motor recovery is highly variable but can be enhanced through motor rehabilitation with sufficient movement repetition and intensity. Cost effective assistive devices that can augment therapy by increasing movement repetition both at home and in the clinic may facilitate recovery. This thesis aims to develop a Smart Glove that can enhance motor recovery by providing feedback to both the therapist and the patient on the number of hand movements (wrist and finger extensions) performed during therapy. The design implements resistive flex sensors for detecting the extensions and processes the information using the Lightblue bean microcontroller mounted on the wrist. Communication between the processing unit and display module is wireless and executes Bluetooth 4.0 communication protocol. The capacity for the glove to measure and record hand movements was tested on three stroke and one traumatic brain injured patient while performing a box and blocks test. During testing many design flaws were noted and several were adapted during testing to improve the function of the glove. Results of the testing showed that the glove could detect wrist and finger extensions but that the sensitivity had to be calibrated for each patient. It also allowed both the therapist and patient to know whether the patient was actually performing the task in the manner requested by the therapist. Further work will reveal whether this feedback can enhance recovery of hand function in neurologically impaired patients.

Contributors

Agent

Created

Date Created
  • 2015

151383-Thumbnail Image.png

Upper body motion analysis using kinect for stroke rehabilitation at the home

Description

Motion capture using cost-effective sensing technology is challenging and the huge success of Microsoft Kinect has been attracting researchers to uncover the potential of using this technology into computer vision

Motion capture using cost-effective sensing technology is challenging and the huge success of Microsoft Kinect has been attracting researchers to uncover the potential of using this technology into computer vision applications. In this thesis, an upper-body motion analysis in a home-based system for stroke rehabilitation using novel RGB-D camera - Kinect is presented. We address this problem by first conducting a systematic analysis of the usability of Kinect for motion analysis in stroke rehabilitation. Then a hybrid upper body tracking approach is proposed which combines off-the-shelf skeleton tracking with a novel depth-fused mean shift tracking method. We proposed several kinematic features reliably extracted from the proposed inexpensive and portable motion capture system and classifiers that correlate torso movement to clinical measures of unimpaired and impaired. Experiment results show that the proposed sensing and analysis works reliably on measuring torso movement quality and is promising for end-point tracking. The system is currently being deployed for large-scale evaluations.

Contributors

Agent

Created

Date Created
  • 2012

151399-Thumbnail Image.png

Adaptive mixed reality rehabilitation for stroke

Description

Millions of Americans live with motor impairments resulting from a stroke and the best way to administer rehabilitative therapy to achieve recovery is not well understood. Adaptive mixed reality rehabilitation

Millions of Americans live with motor impairments resulting from a stroke and the best way to administer rehabilitative therapy to achieve recovery is not well understood. Adaptive mixed reality rehabilitation (AMRR) is a novel integration of motion capture technology and high-level media computing that provides precise kinematic measurements and engaging multimodal feedback for self-assessment during a therapeutic task. The AMRR system was evaluated in a small (N=3) cohort of stroke survivors to determine best practices for administering adaptive, media-based therapy. A proof of concept study followed, examining changes in clinical scale and kinematic performances among a group of stroke survivors who received either a month of AMRR therapy (N = 11) or matched dosing of traditional repetitive task therapy (N = 10). Both groups demonstrated statistically significant improvements in Wolf Motor Function Test and upper-extremity Fugl-Meyer Assessment scores, indicating increased function after the therapy. However, only participants who received AMRR therapy showed a consistent improvement in their kinematic measurements, including those measured in the trained reaching task (reaching to grasp a cone) and in an untrained reaching task (reaching to push a lighted button). These results suggest that that the AMRR system can be used as a therapy tool to enhance both functionality and reaching kinematics that quantify movement quality. Additionally, the AMRR concepts are currently being transitioned to a home-based training application. An inexpensive, easy-to-use, toolkit of tangible objects has been developed to sense, assess and provide feedback on hand function during different functional activities. These objects have been shown to accurately and consistently track hand function in people with unimpaired movements and will be tested with stroke survivors in the future.

Contributors

Agent

Created

Date Created
  • 2012

149371-Thumbnail Image.png

Multimodal movement sensing using motion capture and inertial sensors for mixed-reality rehabilitation

Description

This thesis presents a multi-modal motion tracking system for stroke patient rehabilitation. This system deploys two sensor modules: marker-based motion capture system and inertial measurement unit (IMU). The integrated system

This thesis presents a multi-modal motion tracking system for stroke patient rehabilitation. This system deploys two sensor modules: marker-based motion capture system and inertial measurement unit (IMU). The integrated system provides real-time measurement of the right arm and trunk movement, even in the presence of marker occlusion. The information from the two sensors is fused through quaternion-based recursive filters to promise robust detection of torso compensation (undesired body motion). Since this algorithm allows flexible sensor configurations, it presents a framework for fusing the IMU data and vision data that can adapt to various sensor selection scenarios. The proposed system consequently has the potential to improve both the robustness and flexibility of the sensing process. Through comparison between the complementary filter, the extended Kalman filter (EKF), the unscented Kalman filter (UKF) and the particle filter (PF), the experimental part evaluated the performance of the quaternion-based complementary filter for 10 sensor combination scenarios. Experimental results demonstrate the favorable performance of the proposed system in case of occlusion. Such investigation also provides valuable information for filtering algorithm and strategy selection in specific sensor applications.

Contributors

Agent

Created

Date Created
  • 2010

151373-Thumbnail Image.png

Kinematic analysis and quantitative evaluation for reach movements in stroke rehabilitation

Description

In this thesis, quantitative evaluation of quality of movement during stroke rehabilitation will be discussed. Previous research on stroke rehabilitation in hospital has been shown to be effective. In this

In this thesis, quantitative evaluation of quality of movement during stroke rehabilitation will be discussed. Previous research on stroke rehabilitation in hospital has been shown to be effective. In this thesis, we study various issues that arise when creating a home-based system that can be deployed in a patient's home. Limitation of motion capture due to reduced number of sensors leads to problems with design of kinematic features for quantitative evaluation. Also, the hierarchical three-level tasks of rehabilitation requires new design of kinematic features. In this thesis, the design of kinematic features for a home based stroke rehabilitation system will be presented. Results of the most challenging classifier are shown and proves the effectiveness of the design. Comparison between modern classification techniques and low computational cost threshold based classification with same features will also be shown.

Contributors

Agent

Created

Date Created
  • 2012

153158-Thumbnail Image.png

Comprehensive interactive neurorehabilitation system design and implementation through the application of interdisciplinary research and integrated design approaches

Description

Stroke is a leading cause of disability with varying effects across stroke survivors necessitating comprehensive approaches to rehabilitation. Interactive neurorehabilitation (INR) systems represent promising technological solutions that can provide an

Stroke is a leading cause of disability with varying effects across stroke survivors necessitating comprehensive approaches to rehabilitation. Interactive neurorehabilitation (INR) systems represent promising technological solutions that can provide an array of sensing, feedback and analysis tools which hold the potential to maximize clinical therapy as well as extend therapy to the home. Currently, there are a variety of approaches to INR design, which coupled with minimal large-scale clinical data, has led to a lack of cohesion in INR design. INR design presents an inherently complex space as these systems have multiple users including stroke survivors, therapists and designers, each with their own user experience needs. This dissertation proposes that comprehensive INR design, which can address this complex user space, requires and benefits from the application of interdisciplinary research that spans motor learning and interactive learning. A methodology for integrated and iterative design approaches to INR task experience, assessment, hardware, software and interactive training protocol design is proposed within the comprehensive example of design and implementation of a mixed reality rehabilitation system for minimally supervised environments. This system was tested with eight stroke survivors who showed promising results in both functional and movement quality improvement. The results of testing the system with stroke survivors as well as observing user experiences will be presented along with suggested improvements to the proposed design methodology. This integrative design methodology is proposed to have benefit for not only comprehensive INR design but also complex interactive system design in general.

Contributors

Agent

Created

Date Created
  • 2014

154384-Thumbnail Image.png

Kinematic and dynamical analysis techniques for human movement analysis from portable sensing devices

Description

Today's world is seeing a rapid technological advancement in various fields, having access to faster computers and better sensing devices. With such advancements, the task of recognizing human activities has

Today's world is seeing a rapid technological advancement in various fields, having access to faster computers and better sensing devices. With such advancements, the task of recognizing human activities has been acknowledged as an important problem, with a wide range of applications such as surveillance, health monitoring and animation. Traditional approaches to dynamical modeling have included linear and nonlinear methods with their respective drawbacks. An alternative idea I propose is the use of descriptors of the shape of the dynamical attractor as a feature representation for quantification of nature of dynamics. The framework has two main advantages over traditional approaches: a) representation of the dynamical system is derived directly from the observational data, without any inherent assumptions, and b) the proposed features show stability under different time-series lengths where traditional dynamical invariants fail.

Approximately 1\% of the total world population are stroke survivors, making it the most common neurological disorder. This increasing demand for rehabilitation facilities has been seen as a significant healthcare problem worldwide. The laborious and expensive process of visual monitoring by physical therapists has motivated my research to invent novel strategies to supplement therapy received in hospital in a home-setting. In this direction, I propose a general framework for tuning component-level kinematic features using therapists’ overall impressions of movement quality, in the context of a Home-based Adaptive Mixed Reality Rehabilitation (HAMRR) system.

The rapid technological advancements in computing and sensing has resulted in large amounts of data which requires powerful tools to analyze. In the recent past, topological data analysis methods have been investigated in various communities, and the work by Carlsson establishes that persistent homology can be used as a powerful topological data analysis approach for effectively analyzing large datasets. I have explored suitable topological data analysis methods and propose a framework for human activity analysis utilizing the same for applications such as action recognition.

Contributors

Agent

Created

Date Created
  • 2016

Applied interdisciplinary concepts for designing visual media within interactive neurorehabilitation systems

Description

As the application of interactive media systems expands to address broader problems in health, education and creative practice, they fall within a higher dimensional space for which it is inherently

As the application of interactive media systems expands to address broader problems in health, education and creative practice, they fall within a higher dimensional space for which it is inherently more complex to design. In response to this need an emerging area of interactive system design, referred to as experiential media systems, applies hybrid knowledge synthesized across multiple disciplines to address challenges relevant to daily experience. Interactive neurorehabilitation (INR) aims to enhance functional movement therapy by integrating detailed motion capture with interactive feedback in a manner that facilitates engagement and sensorimotor learning for those who have suffered neurologic injury. While INR shows great promise to advance the current state of therapies, a cohesive media design methodology for INR is missing due to the present lack of substantial evidence within the field. Using an experiential media based approach to draw knowledge from external disciplines, this dissertation proposes a compositional framework for authoring visual media for INR systems across contexts and applications within upper extremity stroke rehabilitation. The compositional framework is applied across systems for supervised training, unsupervised training, and assisted reflection, which reflect the collective work of the Adaptive Mixed Reality Rehabilitation (AMRR) Team at Arizona State University, of which the author is a member. Formal structures and a methodology for applying them are described in detail for the visual media environments designed by the author. Data collected from studies conducted by the AMRR team to evaluate these systems in both supervised and unsupervised training contexts is also discussed in terms of the extent to which the application of the compositional framework is supported and which aspects require further investigation. The potential broader implications of the proposed compositional framework and methodology are the dissemination of interdisciplinary information to accelerate the informed development of INR applications and to demonstrate the potential benefit of generalizing integrative approaches, merging arts and science based knowledge, for other complex problems related to embodied learning.

Contributors

Agent

Created

Date Created
  • 2014