Matching Items (3)
Filtering by

Clear all filters

157161-Thumbnail Image.png
Description
Antibodies are naturally occurring proteins that protect a host during infection through direct neutralization and/or recruitment of the innate immune system. Unfortunately, in some infections, antibodies present unique hurdles that must be overcome for a safer and more efficacious antibody-based therapeutic (e.g., antibody dependent viral enhancement (ADE) and inflammatory pathology).

Antibodies are naturally occurring proteins that protect a host during infection through direct neutralization and/or recruitment of the innate immune system. Unfortunately, in some infections, antibodies present unique hurdles that must be overcome for a safer and more efficacious antibody-based therapeutic (e.g., antibody dependent viral enhancement (ADE) and inflammatory pathology). This dissertation describes the utilization of plant expression systems to produce N-glycan specific antibody-based therapeutics for Dengue Virus (DENV) and Chikungunya Virus (CHIKV). The Fc region of an antibody interacts with Fcγ Receptors (FcγRs) on immune cells and components of the innate immune system. Each class of immune cells has a distinct action of neutralization (e.g., antibody dependent cell-mediated cytotoxicity (ADCC) and antibody dependent cell-mediated phagocytosis (ADCP)). Therefore, structural alteration of the Fc region results in novel immune pathways of protection. One approach is to modulate the N-glycosylation in the Fc region of the antibody. Of scientific significance, is the plant’s capacity to express human antibodies with homogenous plant and humanized N-glycosylation (WT and GnGn, respectively). This allows to study how specific glycovariants interact with other components of the immune system to clear an infection, producing a tailor-made antibody for distinct diseases. In the first section, plant-produced glycovariants were explored for reduced interactions with specific FcγRs for the overall reduction in ADE for DENV infections. The results demonstrate a reduction in ADE of our plant-produced monoclonal antibodies in in vitro experiments, which led to a greater survival in vivo of immunodeficient mice challenged with lethal doses of DENV and a sub-lethal dose of DENV in ADE conditions. In the second section, plant-produced glycovariants were explored for increased interaction with specific FcγRs to improve ADCC in the treatment of the highly inflammatory CHIKV. The results demonstrate an increase ADCC activity in in vitro experiments and a reduction in CHIKV-associated inflammation in in vivo mouse models. Overall, the significance of this dissertation is that it can provide a treatment for DENV and CHIKV; but equally importantly, give insight to the role of N-glycosylation in antibody effector functions, which has a broader implication for therapeutic development for other viral infections.
ContributorsHurtado, Jonathan (Author) / Chen, Qiang (Thesis advisor) / Arntzen, Charles (Committee member) / Borges, Chad (Committee member) / Lake, Douglas (Committee member) / Arizona State University (Publisher)
Created2019
155123-Thumbnail Image.png
Description
Despite the approval of a Dengue virus (DV) vaccine in five endemic countries, dengue prevention would benefit from an immunization strategy highly immunogenic in young infants and not curtailed by viral interference. Problematically, infants younger than 9 year of age, whom are particularly prone to Dengue severe infection and death,

Despite the approval of a Dengue virus (DV) vaccine in five endemic countries, dengue prevention would benefit from an immunization strategy highly immunogenic in young infants and not curtailed by viral interference. Problematically, infants younger than 9 year of age, whom are particularly prone to Dengue severe infection and death, cannot be immunized using current approved DV vaccine. The most important issues documented so far are the lack of efficiency and enhancement of the disease in young seronegative recipients, as well as uneven protection against the four DV serotypes. Based on data from clinical trials that showed enhanced performance of dengue vaccines when the host has previous anti-flaviviral immunity, I proposed here an attractive solution to complement the current vaccine: a recombinant measles vaccine vectoring dengue protective antigens to be administered to young infants. I hypothesized that recombinant measles virus expressing Dengue 2 and 4 antigens would successfully induce neutralizing responses against DV2 and 4 and the vaccine cocktail of this recombinant measles can prime anti-flaviviral neutralizing immunity. For this dissertation, I generated and performed preclinical immune assessment for four novel Measles-Dengue (MV-DV) vaccine candidates. I generated four MVs expressing the pre membrane (prM) and full length or truncated (90%) forms of the major envelope (E) from DV2 and DV4. Two virus, MVvac2-DV2(prME)N and MVvac2-DV4(prME), expressed high levels of membrane associated full-length E, while the other two viruses, MVvac2-DV2(prMEsol)N and MVvac2-DV4(prMEsol)N, expressed and secreted truncated, soluble E protein to its extracellular environment. The last two vectored vaccines proved superior anti-dengue neutralizing responses comparing to its corresponding full length vectors. Remarkably, when MVvac2-DV2/4(prMEsol)N recombinant vaccines were combined, the vaccine cocktail was able to prime cross-neutralizing responses against DV 1 and the relatively distant 17D yellow fever virus attenuated strain. Thus, I identify a promising DV vaccination strategy, MVvac2-DV2/4(prMEsol)N, which can prime broad neutralizing immune responses by using only two of the four available DV serotypes. The current MV immunization scheme can be advantageus to prime broad anti-flaviviral neutralizing immunity status, which will be majorly boosted by subsequent chimeric Dengue vaccine approaches.
ContributorsAbdelgalel, Rowida (Author) / Reyes del Valle, Jorge (Thesis advisor) / Mason, Hugh (Thesis advisor) / Lake, Douglas (Committee member) / Stout, Valerie (Committee member) / Frasch, Wayne (Committee member) / Arizona State University (Publisher)
Created2016
158428-Thumbnail Image.png
Description
Anoxia tolerance is strongly correlated with tolerance to heat, desiccation, hyperosmotic shock, freezing, and other general stressors, suggesting that anoxia tolerance is broadly related to stress tolerance. Age affects the capacity of many animals to survive anoxia, but the basis to this ontogenic variation is poorly understood. We exposed adult

Anoxia tolerance is strongly correlated with tolerance to heat, desiccation, hyperosmotic shock, freezing, and other general stressors, suggesting that anoxia tolerance is broadly related to stress tolerance. Age affects the capacity of many animals to survive anoxia, but the basis to this ontogenic variation is poorly understood. We exposed adult Drosophila, 1, 3, 5, 7, 9, and 12 days past eclosion, to six hours of anoxia and assessed survival 24-hours post-treatment. Survival of anoxia declined strongly with age (from 80% survival for one-day-old flies to 10% survival for 12 day-old-flies), a surprising result since adult fly senescence in Drosophila is usually observed much later. In anoxia, adenosine triphosphate (ATP) levels declined rapidly (< 30 min) to near-zero levels in both 1 and 12-day old adults; thus the higher anoxia-tolerance of young adults is not due to a better capacity to keep ATP elevated. Relatively few physiological parameters are reported to change over this age range in D. melanogaster, but gut bacterial content increases strongly. As a partial test for a causal link between bacterial load and anoxia tolerance, we replaced food daily, every third day, or every sixth day, and assayed survival of six hours of anoxia and bacterial load at 12 days of age. Anoxia tolerance for 12-day old flies was improved by more food changes and was strongly and negatively affected by bacterial load. These data suggest that increasing bacterial load may play an important role in the age-related decline of anoxia tolerance in Drosophila.
ContributorsSargent, James (Author) / Harrison, Jon F. (Thesis advisor) / Haydel, Shelly (Committee member) / Lake, Douglas (Committee member) / Arizona State University (Publisher)
Created2020