Matching Items (4)

Filtering by

Clear all filters

149668-Thumbnail Image.png

Privacy preserving service discovery and ranking for multiple user QoS requirements in service-based software systems

Description

Service based software (SBS) systems are software systems consisting of services based on the service oriented architecture (SOA). Each service in SBS systems provides partial functionalities and collaborates with other

Service based software (SBS) systems are software systems consisting of services based on the service oriented architecture (SOA). Each service in SBS systems provides partial functionalities and collaborates with other services as workflows to provide the functionalities required by the systems. These services may be developed and/or owned by different entities and physically distributed across the Internet. Compared with traditional software system components which are usually specifically designed for the target systems and bound tightly, the interfaces of services and their communication protocols are standardized, which allow SBS systems to support late binding, provide better interoperability, better flexibility in dynamic business logics, and higher fault tolerance. The development process of SBS systems can be divided to three major phases: 1) SBS specification, 2) service discovery and matching, and 3) service composition and workflow execution. This dissertation focuses on the second phase, and presents a privacy preserving service discovery and ranking approach for multiple user QoS requirements. This approach helps service providers to register services and service users to search services through public, but untrusted service directories with the protection of their privacy against the service directories. The service directories can match the registered services with service requests, but do not learn any information about them. Our approach also enforces access control on services during the matching process, which prevents unauthorized users from discovering services. After the service directories match a set of services that satisfy the service users' functionality requirements, the service discovery approach presented in this dissertation further considers service users' QoS requirements in two steps. First, this approach optimizes services' QoS by making tradeoff among various QoS aspects with users' QoS requirements and preferences. Second, this approach ranks services based on how well they satisfy users' QoS requirements to help service users select the most suitable service to develop their SBSs.

Contributors

Agent

Created

Date Created
  • 2011

152422-Thumbnail Image.png

Automated event-driven security assessment

Description

With the growth of IT products and sophisticated software in various operating systems, I observe that security risks in systems are skyrocketing constantly. Consequently, Security Assessment is now considered as

With the growth of IT products and sophisticated software in various operating systems, I observe that security risks in systems are skyrocketing constantly. Consequently, Security Assessment is now considered as one of primary security mechanisms to measure assurance of systems since systems that are not compliant with security requirements may lead adversaries to access critical information by circumventing security practices. In order to ensure security, considerable efforts have been spent to develop security regulations by facilitating security best-practices. Applying shared security standards to the system is critical to understand vulnerabilities and prevent well-known threats from exploiting vulnerabilities. However, many end users tend to change configurations of their systems without paying attention to the security. Hence, it is not straightforward to protect systems from being changed by unconscious users in a timely manner. Detecting the installation of harmful applications is not sufficient since attackers may exploit risky software as well as commonly used software. In addition, checking the assurance of security configurations periodically is disadvantageous in terms of time and cost due to zero-day attacks and the timing attacks that can leverage the window between each security checks. Therefore, event-driven monitoring approach is critical to continuously assess security of a target system without ignoring a particular window between security checks and lessen the burden of exhausted task to inspect the entire configurations in the system. Furthermore, the system should be able to generate a vulnerability report for any change initiated by a user if such changes refer to the requirements in the standards and turn out to be vulnerable. Assessing various systems in distributed environments also requires to consistently applying standards to each environment. Such a uniformed consistent assessment is important because the way of assessment approach for detecting security vulnerabilities may vary across applications and operating systems. In this thesis, I introduce an automated event-driven security assessment framework to overcome and accommodate the aforementioned issues. I also discuss the implementation details that are based on the commercial-off-the-self technologies and testbed being established to evaluate approach. Besides, I describe evaluation results that demonstrate the effectiveness and practicality of the approaches.

Contributors

Agent

Created

Date Created
  • 2014

153969-Thumbnail Image.png

Techniques for supporting prediction of security breaches in critical cloud infrastructures using Bayesian network and Markov decision process

Description

Emerging trends in cyber system security breaches in critical cloud infrastructures show that attackers have abundant resources (human and computing power), expertise and support of large organizations and possible foreign

Emerging trends in cyber system security breaches in critical cloud infrastructures show that attackers have abundant resources (human and computing power), expertise and support of large organizations and possible foreign governments. In order to greatly improve the protection of critical cloud infrastructures, incorporation of human behavior is needed to predict potential security breaches in critical cloud infrastructures. To achieve such prediction, it is envisioned to develop a probabilistic modeling approach with the capability of accurately capturing system-wide causal relationship among the observed operational behaviors in the critical cloud infrastructure and accurately capturing probabilistic human (users’) behaviors on subsystems as the subsystems are directly interacting with humans. In our conceptual approach, the system-wide causal relationship can be captured by the Bayesian network, and the probabilistic human behavior in the subsystems can be captured by the Markov Decision Processes. The interactions between the dynamically changing state graphs of Markov Decision Processes and the dynamic causal relationships in Bayesian network are key components in such probabilistic modelling applications. In this thesis, two techniques are presented for supporting the above vision to prediction of potential security breaches in critical cloud infrastructures. The first technique is for evaluation of the conformance of the Bayesian network with the multiple MDPs. The second technique is to evaluate the dynamically changing Bayesian network structure for conformance with the rules of the Bayesian network using a graph checker algorithm. A case study and its simulation are presented to show how the two techniques support the specific parts in our conceptual approach to predicting system-wide security breaches in critical cloud infrastructures.

Contributors

Agent

Created

Date Created
  • 2015

153032-Thumbnail Image.png

Discovering and using patterns for countering security challenges

Description

Most existing security decisions for both defending and attacking are made based on some deterministic approaches that only give binary answers. Even though these approaches can achieve low false positive

Most existing security decisions for both defending and attacking are made based on some deterministic approaches that only give binary answers. Even though these approaches can achieve low false positive rate for decision making, they have high false negative rates due to the lack of accommodations to new attack methods and defense techniques. In this dissertation, I study how to discover and use patterns with uncertainty and randomness to counter security challenges. By extracting and modeling patterns in security events, I am able to handle previously unknown security events with quantified confidence, rather than simply making binary decisions. In particular, I cope with the following four real-world security challenges by modeling and analyzing with pattern-based approaches: 1) How to detect and attribute previously unknown shellcode? I propose instruction sequence abstraction that extracts coarse-grained patterns from an instruction sequence and use Markov chain-based model and support vector machines to detect and attribute shellcode; 2) How to safely mitigate routing attacks in mobile ad hoc networks? I identify routing table change patterns caused by attacks, propose an extended Dempster-Shafer theory to measure the risk of such changes, and use a risk-aware response mechanism to mitigate routing attacks; 3) How to model, understand, and guess human-chosen picture passwords? I analyze collected human-chosen picture passwords, propose selection function that models patterns in password selection, and design two algorithms to optimize password guessing paths; and 4) How to identify influential figures and events in underground social networks? I analyze collected underground social network data, identify user interaction patterns, and propose a suite of measures for systematically discovering and mining adversarial evidence. By solving these four problems, I demonstrate that discovering and using patterns could help deal with challenges in computer security, network security, human-computer interaction security, and social network security.

Contributors

Agent

Created

Date Created
  • 2014