Matching Items (18)

153686-Thumbnail Image.png

Wireless network design and optimization: from social awareness to security

Description

A principal goal of this dissertation is to study wireless network design and optimization with the focus on two perspectives: 1) socially-aware mobile networking and computing; 2) security and privacy

A principal goal of this dissertation is to study wireless network design and optimization with the focus on two perspectives: 1) socially-aware mobile networking and computing; 2) security and privacy in wireless networking. Under this common theme, this dissertation can be broadly organized into three parts.

The first part studies socially-aware mobile networking and computing. First, it studies random access control and power control under a social group utility maximization (SGUM) framework. The socially-aware Nash equilibria (SNEs) are derived and analyzed. Then, it studies mobile crowdsensing under an incentive mechanism that exploits social trust assisted reciprocity (STAR). The efficacy of the STAR mechanism is thoroughly investigated. Next, it studies mobile users' data usage behaviors under the impact of social services and the wireless operator's pricing. Based on a two-stage Stackelberg game formulation, the user demand equilibrium (UDE) is analyzed in Stage II and the optimal pricing strategy is developed in Stage I. Last, it studies opportunistic cooperative networking under an optimal stopping framework with two-level decision-making. For both cases with or without dedicated relays, the optimal relaying strategies are derived and analyzed.

The second part studies radar sensor network coverage for physical security. First, it studies placement of bistatic radar (BR) sensor networks for barrier coverage. The optimality of line-based placement is analyzed, and the optimal placement of BRs on a line segment is characterized. Then, it studies the coverage of radar sensor networks that exploits the Doppler effect. Based on a Doppler coverage model, an efficient method is devised to characterize Doppler-covered regions and an algorithm is developed to find the minimum radar density required for Doppler coverage.

The third part studies cyber security and privacy in socially-aware networking and computing. First, it studies random access control, cooperative jamming, and spectrum access under an extended SGUM framework that incorporates negative social ties. The SNEs are derived and analyzed. Then, it studies pseudonym change for personalized location privacy under the SGUM framework. The SNEs are analyzed and an efficient algorithm is developed to find an SNE with desirable properties.

Contributors

Agent

Created

Date Created
  • 2015

153207-Thumbnail Image.png

Information pooling bias in collaborative cyber forensics

Description

Cyber threats are growing in number and sophistication making it important to continually study and improve all dimensions of cyber defense. Human teamwork in cyber defense analysis has been overlooked

Cyber threats are growing in number and sophistication making it important to continually study and improve all dimensions of cyber defense. Human teamwork in cyber defense analysis has been overlooked even though it has been identified as an important predictor of cyber defense performance. Also, to detect advanced forms of threats effective information sharing and collaboration between the cyber defense analysts becomes imperative. Therefore, through this dissertation work, I took a cognitive engineering approach to investigate and improve cyber defense teamwork. The approach involved investigating a plausible team-level bias called the information pooling bias in cyber defense analyst teams conducting the detection task that is part of forensics analysis through human-in-the-loop experimentation. The approach also involved developing agent-based models based on the experimental results to explore the cognitive underpinnings of this bias in human analysts. A prototype collaborative visualization tool was developed by considering the plausible cognitive limitations contributing to the bias to investigate whether a cognitive engineering-driven visualization tool can help mitigate the bias in comparison to off-the-shelf tools. It was found that participant teams conducting the collaborative detection tasks as part of forensics analysis, experience the information pooling bias affecting their performance. Results indicate that cognitive friendly visualizations can help mitigate the effect of this bias in cyber defense analysts. Agent-based modeling produced insights on internal cognitive processes that might be contributing to this bias which could be leveraged in building future visualizations. This work has multiple implications including the development of new knowledge about the science of cyber defense teamwork, a demonstration of the advantage of developing tools using a cognitive engineering approach, a demonstration of the advantage of using a hybrid cognitive engineering methodology to study teams in general and finally, a demonstration of the effect of effective teamwork on cyber defense performance.

Contributors

Agent

Created

Date Created
  • 2014

151982-Thumbnail Image.png

Security and privacy in heterogeneous wireless and mobile networks: challenges and solutions

Description

The rapid advances in wireless communications and networking have given rise to a number of emerging heterogeneous wireless and mobile networks along with novel networking paradigms, including wireless sensor networks,

The rapid advances in wireless communications and networking have given rise to a number of emerging heterogeneous wireless and mobile networks along with novel networking paradigms, including wireless sensor networks, mobile crowdsourcing, and mobile social networking. While offering promising solutions to a wide range of new applications, their widespread adoption and large-scale deployment are often hindered by people's concerns about the security, user privacy, or both. In this dissertation, we aim to address a number of challenging security and privacy issues in heterogeneous wireless and mobile networks in an attempt to foster their widespread adoption. Our contributions are mainly fivefold. First, we introduce a novel secure and loss-resilient code dissemination scheme for wireless sensor networks deployed in hostile and harsh environments. Second, we devise a novel scheme to enable mobile users to detect any inauthentic or unsound location-based top-k query result returned by an untrusted location-based service providers. Third, we develop a novel verifiable privacy-preserving aggregation scheme for people-centric mobile sensing systems. Fourth, we present a suite of privacy-preserving profile matching protocols for proximity-based mobile social networking, which can support a wide range of matching metrics with different privacy levels. Last, we present a secure combination scheme for crowdsourcing-based cooperative spectrum sensing systems that can enable robust primary user detection even when malicious cognitive radio users constitute the majority.

Contributors

Agent

Created

Date Created
  • 2013

149668-Thumbnail Image.png

Privacy preserving service discovery and ranking for multiple user QoS requirements in service-based software systems

Description

Service based software (SBS) systems are software systems consisting of services based on the service oriented architecture (SOA). Each service in SBS systems provides partial functionalities and collaborates with other

Service based software (SBS) systems are software systems consisting of services based on the service oriented architecture (SOA). Each service in SBS systems provides partial functionalities and collaborates with other services as workflows to provide the functionalities required by the systems. These services may be developed and/or owned by different entities and physically distributed across the Internet. Compared with traditional software system components which are usually specifically designed for the target systems and bound tightly, the interfaces of services and their communication protocols are standardized, which allow SBS systems to support late binding, provide better interoperability, better flexibility in dynamic business logics, and higher fault tolerance. The development process of SBS systems can be divided to three major phases: 1) SBS specification, 2) service discovery and matching, and 3) service composition and workflow execution. This dissertation focuses on the second phase, and presents a privacy preserving service discovery and ranking approach for multiple user QoS requirements. This approach helps service providers to register services and service users to search services through public, but untrusted service directories with the protection of their privacy against the service directories. The service directories can match the registered services with service requests, but do not learn any information about them. Our approach also enforces access control on services during the matching process, which prevents unauthorized users from discovering services. After the service directories match a set of services that satisfy the service users' functionality requirements, the service discovery approach presented in this dissertation further considers service users' QoS requirements in two steps. First, this approach optimizes services' QoS by making tradeoff among various QoS aspects with users' QoS requirements and preferences. Second, this approach ranks services based on how well they satisfy users' QoS requirements to help service users select the most suitable service to develop their SBSs.

Contributors

Agent

Created

Date Created
  • 2011

149360-Thumbnail Image.png

vLab-- a cloud based resource and service sharing platform for computer and network security education

Description

Cloud computing systems fundamentally provide access to large pools of data and computational resources through a variety of interfaces similar in spirit to existing grid and HPC resource management and

Cloud computing systems fundamentally provide access to large pools of data and computational resources through a variety of interfaces similar in spirit to existing grid and HPC resource management and programming systems. These types of systems offer a new programming target for scalable application developers and have gained popularity over the past few years. However, most cloud computing systems in operation today are proprietary and rely upon infrastructure that is invisible to the research community, or are not explicitly designed to be instrumented and modified by systems researchers. In this research, Xen Server Management API is employed to build a framework for cloud computing that implements what is commonly referred to as Infrastructure as a Service (IaaS); systems that give users the ability to run and control entire virtual machine instances deployed across a variety physical resources. The goal of this research is to develop a cloud based resource and service sharing platform for Computer network security education a.k.a Virtual Lab.

Contributors

Agent

Created

Date Created
  • 2010

153041-Thumbnail Image.png

Firewall rule set analysis and visualization

Description

A firewall is a necessary component for network security and just like any regular equipment it requires maintenance. To keep up with changing cyber security trends and threats, firewall rules

A firewall is a necessary component for network security and just like any regular equipment it requires maintenance. To keep up with changing cyber security trends and threats, firewall rules are modified frequently. Over time such modifications increase the complexity, size and verbosity of firewall rules. As the rule set grows in size, adding and modifying rule becomes a tedious task. This discourages network administrators to review the work done by previous administrators before and after applying any changes. As a result the quality and efficiency of the firewall goes down.

Modification and addition of rules without knowledge of previous rules creates anomalies like shadowing and rule redundancy. Anomalous rule sets not only limit the efficiency of the firewall but in some cases create a hole in the perimeter security. Detection of anomalies has been studied for a long time and some well established procedures have been implemented and tested. But they all have a common problem of visualizing the results. When it comes to visualization of firewall anomalies, the results do not fit in traditional matrix, tree or sunburst representations.

This research targets the anomaly detection and visualization problem. It analyzes and represents firewall rule anomalies in innovative ways such as hive plots and dynamic slices. Such graphical representations of rule anomalies are useful in understanding the state of a firewall. It also helps network administrators in finding and fixing the anomalous rules.

Contributors

Agent

Created

Date Created
  • 2014

153032-Thumbnail Image.png

Discovering and using patterns for countering security challenges

Description

Most existing security decisions for both defending and attacking are made based on some deterministic approaches that only give binary answers. Even though these approaches can achieve low false positive

Most existing security decisions for both defending and attacking are made based on some deterministic approaches that only give binary answers. Even though these approaches can achieve low false positive rate for decision making, they have high false negative rates due to the lack of accommodations to new attack methods and defense techniques. In this dissertation, I study how to discover and use patterns with uncertainty and randomness to counter security challenges. By extracting and modeling patterns in security events, I am able to handle previously unknown security events with quantified confidence, rather than simply making binary decisions. In particular, I cope with the following four real-world security challenges by modeling and analyzing with pattern-based approaches: 1) How to detect and attribute previously unknown shellcode? I propose instruction sequence abstraction that extracts coarse-grained patterns from an instruction sequence and use Markov chain-based model and support vector machines to detect and attribute shellcode; 2) How to safely mitigate routing attacks in mobile ad hoc networks? I identify routing table change patterns caused by attacks, propose an extended Dempster-Shafer theory to measure the risk of such changes, and use a risk-aware response mechanism to mitigate routing attacks; 3) How to model, understand, and guess human-chosen picture passwords? I analyze collected human-chosen picture passwords, propose selection function that models patterns in password selection, and design two algorithms to optimize password guessing paths; and 4) How to identify influential figures and events in underground social networks? I analyze collected underground social network data, identify user interaction patterns, and propose a suite of measures for systematically discovering and mining adversarial evidence. By solving these four problems, I demonstrate that discovering and using patterns could help deal with challenges in computer security, network security, human-computer interaction security, and social network security.

Contributors

Agent

Created

Date Created
  • 2014

154622-Thumbnail Image.png

Analysis and visualization of OpenFlow rule conflicts

Description

In traditional networks the control and data plane are highly coupled, hindering development. With Software Defined Networking (SDN), the two planes are separated, allowing innovations on either one independently of

In traditional networks the control and data plane are highly coupled, hindering development. With Software Defined Networking (SDN), the two planes are separated, allowing innovations on either one independently of the other. Here, the control plane is formed by the applications that specify an organization's policy and the data plane contains the forwarding logic. The application sends all commands to an SDN controller which then performs the requested action on behalf of the application. Generally, the requested action is a modification to the flow tables, present in the switches, to reflect a change in the organization's policy. There are a number of ways to control the network using the SDN principles, but the most widely used approach is OpenFlow.

With the applications now having direct access to the flow table entries, it is easy to have inconsistencies arise in the flow table rules. Since the flow rules are structured similar to firewall rules, the research done in analyzing and identifying firewall rule conflicts can be adapted to work with OpenFlow rules.

The main work of this thesis is to implement flow conflict detection logic in OpenDaylight and inspect the applicability of techniques in visualizing the conflicts. A hierarchical edge-bundling technique coupled with a Reingold-Tilford tree is employed to present the relationship between the conflicting rules. Additionally, a table-driven approach is also implemented to display the details of each flow.

Both types of visualization are then tested for correctness by providing them with flows which are known to have conflicts. The conflicts were identified properly and displayed by the views.

Contributors

Agent

Created

Date Created
  • 2016

153428-Thumbnail Image.png

Mining content and relations for social spammer detection

Description

Social networking services have emerged as an important platform for large-scale information sharing and communication. With the growing popularity of social media, spamming has become rampant in the platforms. Complex

Social networking services have emerged as an important platform for large-scale information sharing and communication. With the growing popularity of social media, spamming has become rampant in the platforms. Complex network interactions and evolving content present great challenges for social spammer detection. Different from some existing well-studied platforms, distinct characteristics of newly emerged social media data present new challenges for social spammer detection. First, texts in social media are short and potentially linked with each other via user connections. Second, it is observed that abundant contextual information may play an important role in distinguishing social spammers and normal users. Third, not only the content information but also the social connections in social media evolve very fast. Fourth, it is easy to amass vast quantities of unlabeled data in social media, but would be costly to obtain labels, which are essential for many supervised algorithms. To tackle those challenges raise in social media data, I focused on developing effective and efficient machine learning algorithms for social spammer detection.

I provide a novel and systematic study of social spammer detection in the dissertation. By analyzing the properties of social network and content information, I propose a unified framework for social spammer detection by collectively using the two types of information in social media. Motivated by psychological findings in physical world, I investigate whether sentiment analysis can help spammer detection in online social media. In particular, I conduct an exploratory study to analyze the sentiment differences between spammers and normal users; and present a novel method to incorporate sentiment information into social spammer detection framework. Given the rapidly evolving nature, I propose a novel framework to efficiently reflect the effect of newly emerging social spammers. To tackle the problem of lack of labeling data in social media, I study how to incorporate network information into text content modeling, and design strategies to select the most representative and informative instances from social media for labeling. Motivated by publicly available label information from other media platforms, I propose to make use of knowledge learned from cross-media to help spammer detection on social media.

Contributors

Agent

Created

Date Created
  • 2015

153544-Thumbnail Image.png

Consequences of false data injection on power system state estimation

Description

The electric power system is one of the largest, most complicated, and most important cyber-physical systems in the world. The link between the cyber and physical level is the Supervisory

The electric power system is one of the largest, most complicated, and most important cyber-physical systems in the world. The link between the cyber and physical level is the Supervisory Control and Data Acquisition (SCADA) systems and Energy Management Systems (EMS). Their functions include monitoring the real-time system operation through state estimation (SE), controlling the system to operate reliably, and optimizing the system operation efficiency. The SCADA acquires the noisy measurements, such as voltage angle and magnitude, line power flows, and line current magnitude, from the remote terminal units (RTUs). These raw data are firstly sent to the SE, which filters all the noisy data and derives the best estimate of the system state. Then the estimated states are used for other EMS functions, such as contingency analysis, optimal power flow, etc.

In the existing state estimation process, there is no defense mechanism for any malicious attacks. Once the communication channel between the SCADA and RTUs is hijacked by the attacker, the attacker can perform a man-in-middle attack and send data of its choice. The only step that can possibly detect the attack during the state estimation process is the bad data detector. Unfortunately, even the bad data detector is unable to detect a certain type of attack, known as the false data injection (FDI) attacks.

Diagnosing the physical consequences of such attacks, therefore, is very important to understand system stability. In this thesis, theoretical general attack models for AC and DC attacks are given and an optimization problem for the worst-case overload attack is formulated. Furthermore, physical consequences of FDI attacks, based on both DC and AC model, are addressed. Various scenarios with different attack targets and system configurations are simulated. The details of the research, results obtained and conclusions drawn are presented in this document.

Contributors

Agent

Created

Date Created
  • 2015