Matching Items (6)

149360-Thumbnail Image.png

vLab-- a cloud based resource and service sharing platform for computer and network security education

Description

Cloud computing systems fundamentally provide access to large pools of data and computational resources through a variety of interfaces similar in spirit to existing grid and HPC resource management and

Cloud computing systems fundamentally provide access to large pools of data and computational resources through a variety of interfaces similar in spirit to existing grid and HPC resource management and programming systems. These types of systems offer a new programming target for scalable application developers and have gained popularity over the past few years. However, most cloud computing systems in operation today are proprietary and rely upon infrastructure that is invisible to the research community, or are not explicitly designed to be instrumented and modified by systems researchers. In this research, Xen Server Management API is employed to build a framework for cloud computing that implements what is commonly referred to as Infrastructure as a Service (IaaS); systems that give users the ability to run and control entire virtual machine instances deployed across a variety physical resources. The goal of this research is to develop a cloud based resource and service sharing platform for Computer network security education a.k.a Virtual Lab.

Contributors

Agent

Created

Date Created
  • 2010

155180-Thumbnail Image.png

Exploring the use of augmented reality to support cognitive modeling in art education

Description

The present study explored the use of augmented reality (AR) technology to support cognitive modeling in an art-based learning environment. The AR application used in this study made visible the

The present study explored the use of augmented reality (AR) technology to support cognitive modeling in an art-based learning environment. The AR application used in this study made visible the thought processes and observational techniques of art experts for the learning benefit of novices through digital annotations, overlays, and side-by-side comparisons that when viewed on mobile device appear directly on works of art.

Using a 2 x 3 factorial design, this study compared learner outcomes and motivation across technologies (audio-only, video, AR) and groupings (individuals, dyads) with 182 undergraduate and graduate students who were self-identified art novices. Learner outcomes were measured by post-activity spoken responses to a painting reproduction with the pre-activity response as a moderating variable. Motivation was measured by the sum score of a reduced version of the Instructional Materials Motivational Survey (IMMS), accounting for attention, relevance, confidence, and satisfaction, with total time spent in learning activity as the moderating variable. Information on participant demographics, technology usage, and art experience was also collected.

Participants were randomly assigned to one of six conditions that differed by technology and grouping before completing a learning activity where they viewed four high-resolution, printed-to-scale painting reproductions in a gallery-like setting while listening to audio-recorded conversations of two experts discussing the actual paintings. All participants listened to expert conversations but the video and AR conditions received visual supports via mobile device.

Though no main effects were found for technology or groupings, findings did include statistically significant higher learner outcomes in the elements of design subscale (characteristics most represented by the visual supports of the AR application) than the audio-only conditions. When participants saw digital representations of line, shape, and color directly on the paintings, they were more likely to identify those same features in the post-activity painting. Seeing what the experts see, in a situated environment, resulted in evidence that participants began to view paintings in a manner similar to the experts. This is evidence of the value of the temporal and spatial contiguity afforded by AR in cognitive modeling learning environments.

Contributors

Agent

Created

Date Created
  • 2016

153105-Thumbnail Image.png

Constructing an interactive multimedia enabled virtual lab learning environment on vlab platform

Description

Interactive remote e-learning is one of the youngest and most popular methods that is used in today's teaching method. WebRTC, on the other hand, has become the popular concept and

Interactive remote e-learning is one of the youngest and most popular methods that is used in today's teaching method. WebRTC, on the other hand, has become the popular concept and method in real time communication. Unlike the old fashioned Adobe Flash, user will communicate directly to each other rather than calling server as the middle man. The world is changing from plug-in to web-browser. However, the WebRTC have not been widely used for school education.

By taking into consideration of the WebRTC solution for data transferring, we propose a new Cloud based interactive multimedia which enables virtual lab learning environment. Three modules were proposed along with an efficient solution for achieving optimized network bandwidth. The One-to-Many communication was introduced in the video conferencing and scalability was tested for the application. The key technical contribution is to establish a sufficient system that designed to utilize the WebRTC in its best way in educational world in the Vlab platform and reduces the tool cost and improves online learning experience.

Contributors

Agent

Created

Date Created
  • 2014

152417-Thumbnail Image.png

Design, development and evaluation of collaborative team training method in virtual worlds for time-critical medical procedures

Description

Medical students acquire and enhance their clinical skills using various available techniques and resources. As the health care profession has move towards team-based practice, students and trainees need to practice

Medical students acquire and enhance their clinical skills using various available techniques and resources. As the health care profession has move towards team-based practice, students and trainees need to practice team-based procedures that involve timely management of clinical tasks and adequate communication with other members of the team. Such team-based procedures include surgical and clinical procedures, some of which are protocol-driven. Cost and time required for individual team-based training sessions, along with other factors, contribute to making the training complex and challenging. A great deal of research has been done on medically-focused collaborative virtual reality (VR)-based training for protocol-driven procedures as a cost-effective as well as time-efficient solution. Most VR-based simulators focus on training of individual personnel. The ones which focus on providing team training provide an interactive simulation for only a few scenarios in a collaborative virtual environment (CVE). These simulators are suited for didactic training for cognitive skills development. The training sessions in the simulators require the physical presence of mentors. The problem with this kind of system is that the mentor must be present at the training location (either physically or virtually) to evaluate the performance of the team (or an individual). Another issue is that there is no efficient methodology that exists to provide feedback to the trainees during the training session itself (formative feedback). Furthermore, they lack the ability to provide training in acquisition or improvement of psychomotor skills for the tasks that require force or touch feedback such as cardiopulmonary resuscitation (CPR). To find a potential solution to overcome some of these concerns, a novel training system was designed and developed that utilizes the integration of sensors into a CVE for time-critical medical procedures. The system allows the participants to simultaneously access the CVE and receive training from geographically diverse locations. The system is also able to provide real-time feedback and is also able to store important data during each training/testing session. Finally, this study also presents a generalizable collaborative team-training system that can be used across various team-based procedures in medical as well as non-medical domains.

Contributors

Agent

Created

Date Created
  • 2014

152647-Thumbnail Image.png

Virtual media: a participant observation study of art education in Second Life

Description

We live in a world of rapidly changing technologies that bathe us in visual images and information, not only challenging us to find connections and make sense of what we

We live in a world of rapidly changing technologies that bathe us in visual images and information, not only challenging us to find connections and make sense of what we are learning, but also allowing us to learn and to collaborate in new ways. Art educators are using one of these new technologies, virtual worlds, to create educational environments and curricula. This study looks at how post-secondary art educators are using Second Life in their undergraduate and graduate level curricula and what perceived benefits, challenges, and unique learning experiences they feel this new educational venue offers. This study uses qualitative and participant observation methodologies, including qualitative interviews, observations, and collection of generated works, to look at the practices of six art educators teaching university level undergraduate and graduate courses. Data are compared internally between the participants and externally by correlating to current research. Art education in Second Life includes many curricula activities and strategies often seen in face-to-face classes, including writing reflections, essays, and papers, creating presentations and Power Points, conducting research, and creating art. Challenges include expense, student frustration and anxiety issues, and the transience of Second Life sites. Among the unique learning experiences are increased opportunities for field trips, student collaboration, access to guest speakers, and the ability to set up experiences not practical or possible in the real world. The experiences of these six art educators can be used as a guide for art educators just beginning exploration of virtual world education and encouragement when looking for new ways to teach that may increase our students' understanding and knowledge and their access and connections to others.

Contributors

Agent

Created

Date Created
  • 2014

155950-Thumbnail Image.png

Perturbing practices: a case study of the effects of virtual manipulatives as novel didactic objects on rational function instruction

Description

The advancement of technology has substantively changed the practices of numerous professions, including teaching. When an instructor first adopts a new technology, established classroom practices are perturbed. These perturbations can

The advancement of technology has substantively changed the practices of numerous professions, including teaching. When an instructor first adopts a new technology, established classroom practices are perturbed. These perturbations can have positive and negative, large or small, and long- or short-term effects on instructors’ abilities to teach mathematical concepts with the new technology. Therefore, in order to better understand teaching with technology, we need to take a closer look at the adoption of new technology in a mathematics classroom. Using interviews and classroom observations, I explored perturbations in mathematical classroom practices as an instructor implemented virtual manipulatives as novel didactic objects in rational function instruction. In particular, the instructor used didactic objects that were designed to lay the foundation for developing a conceptual understanding of rational functions through the coordination of relative size of the value of the numerator in terms of the value of the denominator. The results are organized according to a taxonomy that captures leader actions, communication, expectations of technology, roles, timing, student engagement, and mathematical conceptions.

Contributors

Agent

Created

Date Created
  • 2017