Matching Items (100)
153009-Thumbnail Image.png
Description
Over the past decade, proton exchange membrane fuel cells have gained much momentum due to their environmental advantages and commutability over internal combustion engines. To carefully study the dynamic behavior of the fuel cells, a dynamic test stand to validate their performance is necessary. Much attention has been given to

Over the past decade, proton exchange membrane fuel cells have gained much momentum due to their environmental advantages and commutability over internal combustion engines. To carefully study the dynamic behavior of the fuel cells, a dynamic test stand to validate their performance is necessary. Much attention has been given to HiL (Hardware-in-loop) testing of the fuel cells, where the simulated FC model is replaced by a real hardware. This thesis presents an economical approach for closed loop HiL testing of PEM fuel cell. After evaluating the performance of the standalone fuel cell system, a fuel cell hybrid electric vehicle model was developed by incorporating a battery system. The FCHEV was tested with two different control strategies, viz. load following and thermostatic.

The study was done to determine the dynamic behavior of the FC when exposed to real-world drive cycles. Different parameters associated with the efficiency of the fuel cell were monitored. An electronic DC load was used to draw current from the FC. The DC load was controlled in real time with a NI PXIe-1071 controller chassis incorporated with NI PXI-6722 and NI PXIe-6341 controllers. The closed loop feedback was obtained with the temperatures from two surface mount thermocouples on the FC. The temperature of these thermocouples follows the curve of the FC core temperature, which is measured with a thermocouple located inside the fuel cell system. This indicates successful implementation of the closed loop feedback. The results show that the FC was able to satisfy the required power when continuous shifting load was present, but there was a discrepancy between the power requirements at times of peak acceleration and also at constant loads when ran for a longer time. It has also been found that further research is required to fully understand the transient behavior of the fuel cell temperature distribution in relation to their use in automotive industry. In the experimental runs involving the FCHEV model with different control strategies, it was noticed that the fuel cell response to transient loads improved and the hydrogen consumption of the fuel cell drastically decreased.
ContributorsGoyal, Govind (Author) / Ra'ouf Mayyas, Abdel (Thesis advisor) / Madakannan, Arunachalanadar (Committee member) / Dalrymple, Odesma (Committee member) / Arizona State University (Publisher)
Created2014
153107-Thumbnail Image.png
Description
To increase the deployment of photovoltaic (PV) systems, a higher level of performance for PV modules should be sought. Soiling, or dust accumulation on the PV modules, is one of the conditions that negatively affect the performance of the PV modules by reducing the light incident onto the surface of

To increase the deployment of photovoltaic (PV) systems, a higher level of performance for PV modules should be sought. Soiling, or dust accumulation on the PV modules, is one of the conditions that negatively affect the performance of the PV modules by reducing the light incident onto the surface of the PV module. This thesis presents two studies that focus on investigating the soiling effect on the performance of the PV modules installed in Metro Phoenix area.

The first study was conducted to investigate the optimum cleaning frequency for cleaning PV modules installed in Mesa, AZ. By monitoring the soiling loss of PV modules mounted on a mock rooftop at ASU-PRL, a detailed soiling modeling was obtained. Same setup was also used for other soiling-related investigations like studying the effect of soiling density on angle of incidence (AOI) dependence, the climatological relevance (CR) to soiling, and spatial variation of the soiling loss. During the first dry season (May to June), the daily soiling rate was found as -0.061% for 20o tilted modules. Based on the obtained soiling rate, cleaning PV modules, when the soiling is just due to dust on 20o tilted residential arrays, was found economically not justifiable.

The second study focuses on evaluating the soiling loss in different locations of Metro Phoenix area of Arizona. The main goal behind the second study was to validate the daily soiling rate obtained from the mock rooftop setup in the first part of this thesis. By collaborating with local solar panel cleaning companies, soiling data for six residential systems in 5 different cities in and around Phoenix was collected, processed, and analyzed. The range of daily soiling rate in the Phoenix area was found as -0.057% to -0.085% for 13-28o tilted arrays. The soiling rate found in the first part of the thesis (-0.061%) for 20o tilted array, was validated since it falls within the range obtained from the second part of the thesis.
ContributorsNaeem, Mohammad Hussain (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Rogers, Bradley (Committee member) / Srinivasan, Devarajan (Committee member) / Arizona State University (Publisher)
Created2014
153145-Thumbnail Image.png
Description
The main objective of this research is to develop an approach to PV module lifetime prediction. In doing so, the aim is to move from empirical generalizations to a formal predictive science based on data-driven case studies of the crystalline silicon PV systems. The evaluation of PV systems aged 5

The main objective of this research is to develop an approach to PV module lifetime prediction. In doing so, the aim is to move from empirical generalizations to a formal predictive science based on data-driven case studies of the crystalline silicon PV systems. The evaluation of PV systems aged 5 to 30 years old that results in systematic predictive capability that is absent today. The warranty period provided by the manufacturers typically range from 20 to 25 years for crystalline silicon modules. The end of lifetime (for example, the time-to-degrade by 20% from rated power) of PV modules is usually calculated using a simple linear extrapolation based on the annual field degradation rate (say, 0.8% drop in power output per year). It has been 26 years since systematic studies on solar PV module lifetime prediction were undertaken as part of the 11-year flat-plate solar array (FSA) project of the Jet Propulsion Laboratory (JPL) funded by DOE. Since then, PV modules have gone through significant changes in construction materials and design; making most of the field data obsolete, though the effect field stressors on the old designs/materials is valuable to be understood. Efforts have been made to adapt some of the techniques developed to the current technologies, but they are too often limited in scope and too reliant on empirical generalizations of previous results. Some systematic approaches have been proposed based on accelerated testing, but no or little experimental studies have followed. Consequently, the industry does not exactly know today how to test modules for a 20 - 30 years lifetime.

This research study focuses on the behavior of crystalline silicon PV module technology in the dry and hot climatic condition of Tempe/Phoenix, Arizona. A three-phase approach was developed: (1) A quantitative failure modes, effects, and criticality analysis (FMECA) was developed for prioritizing failure modes or mechanisms in a given environment; (2) A time-series approach was used to model environmental stress variables involved and prioritize their effect on the power output drop; and (3) A procedure for developing a prediction model was proposed for the climatic specific condition based on accelerated degradation testing
ContributorsKuitche, Joseph Mathurin (Author) / Pan, Rong (Thesis advisor) / Tamizhmani, Govindasamy (Thesis advisor) / Montgomery, Douglas C. (Committee member) / Wu, Teresa (Committee member) / Arizona State University (Publisher)
Created2014
152710-Thumbnail Image.png
Description
Increased global demand for energy has led to prolific use of fossil fuels, which produce and release greenhouse gases, such as carbon dioxide. This increase in atmospheric carbon dioxide affects the global weather system and has been cited as a cause for global warming. For humans to continue to meet

Increased global demand for energy has led to prolific use of fossil fuels, which produce and release greenhouse gases, such as carbon dioxide. This increase in atmospheric carbon dioxide affects the global weather system and has been cited as a cause for global warming. For humans to continue to meet demands for energy while reducing greenhouse emission, a sustainable, carbon-neutral energy source must be developed. The sun provides energy for the majority of life on earth, as well as the energy stored in the chemical bonds of fossil fuels. This dissertation investigates systems inspired by the biological mechanism of solar energy capture and storage. In natural photosynthesis, organisms use chlorophyll as a chromophore to absorb the sun's energy. Bio-inspired systems use close analogues like porphyrins and phthalocyanines. In this dissertation, a soluble, semiconducting porphyrin is reported. The polymer was synthesized via a Buchwald-Hartwig style coupling of porphyrin monomers which produced a polyaniline-like chain with porphyrins incorporated into the backbone. Spectroscopic and electrochemical studies were performed, which show evidence of excited state charge transfer and a first oxidation state of 0.58 V (vs SCE). These properties suggest that the polymer could be involved in excited state electron donation to fullerenes and other electron acceptors, which could be beneficial in organic photovoltaics, sensors, and other applications. Molecular dyads and triads capable of charge separation have been studied for decades, and the spectroscopic properties of two novel systems are reported in this dissertation. A peripherally-connected zinc-phthalocyanine-C60 dyad was studied, and showed excited state electron transfer from the phthalocyanine excited state to the C60, with a long-lived charge separated state. An axially-linked carotene-Si-pthalocyanine-C60 triad was studied, showing excited state electron transfer from the phthalocyanine to the C60, but fast recombination before hole transfer can occur to the carotene. Analogues of the electron transport mechanisms used in many biological systems use iron-sulfur clusters to shuttle electrons from donors to acceptors. In this dissertation, the spectroscopic properties of a de novo protein were studied. Nanosecond transient absorption was used to characterize the electron and energy transfer of an excited water-soluble porphyrin to the oxidized [FeS] clusters incorporated in the de novo protein. The triplet state of the porphyrin was strongly quenched with the holo-protein without a rise in porphyrin plus signal, suggesting that only Dexter-type energy transfer occurs between the sensitized porphyrin and the [FeS] clusters.
ContributorsSchmitz, Robert (Author) / Gust, John D (Thesis advisor) / Jones, Anne K (Committee member) / Buttry, Daniel (Committee member) / Arizona State University (Publisher)
Created2014
153168-Thumbnail Image.png
Description
Proton exchange membrane fuel cells have attracted immense research activities from the inception of the technology due to its high stability and performance capabilities. The major obstacle from commercialization is the cost of the catalyst material in manufacturing the fuel cell. In the present study, the major focus in PEMFCs

Proton exchange membrane fuel cells have attracted immense research activities from the inception of the technology due to its high stability and performance capabilities. The major obstacle from commercialization is the cost of the catalyst material in manufacturing the fuel cell. In the present study, the major focus in PEMFCs has been in reduction of the cost of the catalyst material using graphene, thin film coated and Organometallic Molecular catalysts. The present research is focused on improving the durability and active surface area of the catalyst materials with low platinum loading using nanomaterials to reduce the effective cost of the fuel cells. Performance, Electrochemical impedance spectroscopy, oxygen reduction and surface morphology studies were performed on each manufactured material.

Alkaline fuel cells with anion exchange membrane get immense attention due to very attractive opportunity of using non-noble metal catalyst materials. In the present study, cathodes with various organometallic cathode materials were prepared and investigated for alkaline membrane fuel cells for oxygen reduction and performance studies. Co and Fe Phthalocyanine catalyst materials were deposited on multi-walled carbon nanotubes (MWCNTs) support materials. Membrane Electrode Assemblies (MEAs) were fabricated using Tokuyama Membrane (#A901) with cathodes containing Co and Fe Phthalocyanine/MWCNTs and Pt/C anodes. Fuel cell performance of the MEAs was examined.
ContributorsKolli, Sri Harsha (Author) / Madakannan, Arunachalanadar (Thesis advisor) / Nam, Changho (Committee member) / Peng, Xihong (Committee member) / Arizona State University (Publisher)
Created2014
153294-Thumbnail Image.png
Description
This study evaluates the potential profitability and environmental benefit available by providing renewable energy from solar- or wind-generated sources to electric vehicle drivers at public charging stations, also known as electric vehicle service equipment (EVSE), in the U.S. Past studies have shown above-average interest in renewable energy by drivers

This study evaluates the potential profitability and environmental benefit available by providing renewable energy from solar- or wind-generated sources to electric vehicle drivers at public charging stations, also known as electric vehicle service equipment (EVSE), in the U.S. Past studies have shown above-average interest in renewable energy by drivers of plug-in electric vehicles (PEVs), though no study has evaluated the profitability and environmental benefit of selling renewable energy to PEV drivers at public EVSE. Through an online survey of 203 U.S.-wide PEV owners and lessees, information was collected on (1) current PEV and EVSE usage, (2) potential willingness to pay (WTP) for upgrading their charge event to renewable energy, and (3) usage of public EVSE if renewable energy was offered. The choice experiment survey method was used to avoid bias known to occur when directly asking for WTP. Sixty percent of the participants purchased their PEVs due to environmental concerns. The survey results indicate a 506% increase in the usage of public pay-per-use EVSE if renewable energy was offered and a mean WTP to upgrade to renewable energy of $0.61 per hour for alternating current (AC) Level 2 EVSE and $1.82 for Direct Current (DC) Fast Chargers (DCFC). Based on data from the 2013 second quarter (2Q) report of The EV Project, which uses the Blink public EVSE network, this usage translates directly to an annual gross income increase of 668% from the original $1.45 million to $11.1 million. Blink would see an annual cost of $16,005 per year for the acquisition of the required renewable energy as renewable energy credits (RECs). Excluding any profit seen purely from the raise in usage, $3.8 million in profits would be gained directly from the sale of renewable energy. Relative to a gasoline-powered internal combustion engine passenger vehicle, greenhouse gas (GHG) emissions are 42% less for the U.S. average blend grid electricity-powered electric vehicle and 99.997% less when wind energy is used. Powering all Blink network charge events with wind energy would reduce the annualized 2Q 2013 GHG emissions of 1,589 metric tons CO2 / yr to 125 kg CO2 / yr, which is the equivalent of removing 334 average U.S. gasoline passenger cars from the road. At the increased usage, 8,031 metric tons CO2 / yr would be prevented per year or the equivalent of the elimination of 1,691 average U.S. passenger cars. These economic and environmental benefits will increase as PEV ownership increases over time.
ContributorsNienhueser, Ian Andrew (Author) / Qiu, Yueming (Thesis advisor) / Rogers, Bradley (Thesis advisor) / Macia, Narciso (Committee member) / Arizona State University (Publisher)
Created2014
150289-Thumbnail Image.png
Description
A primary motivation of research in photovoltaic technology is to obtain higher efficiency photovoltaic devices at reduced cost of production so that solar electricity can be cost competitive. The majority of photovoltaic technologies are based on p-n junction, with efficiency potential being much lower than the thermodynamic limits of individual

A primary motivation of research in photovoltaic technology is to obtain higher efficiency photovoltaic devices at reduced cost of production so that solar electricity can be cost competitive. The majority of photovoltaic technologies are based on p-n junction, with efficiency potential being much lower than the thermodynamic limits of individual technologies and thereby providing substantial scope for further improvements in efficiency. The thesis explores photovoltaic devices using new physical processes that rely on thin layers and are capable of attaining the thermodynamic limit of photovoltaic technology. Silicon heterostructure is one of the candidate technologies in which thin films induce a minority carrier collecting junction in silicon and the devices can achieve efficiency close to the thermodynamic limits of silicon technology. The thesis proposes and experimentally establishes a new theory explaining the operation of silicon heterostructure solar cells. The theory will assist in identifying the optimum properties of thin film materials for silicon heterostructure and help in design and characterization of the devices, along with aiding in developing new devices based on this technology. The efficiency potential of silicon heterostructure is constrained by the thermodynamic limit (31%) of single junction solar cell and is considerably lower than the limit of photovoltaic conversion (~ 80 %). A further improvement in photovoltaic conversion efficiency is possible by implementing a multiple quasi-fermi level system (MQFL). A MQFL allows the absorption of sub band gap photons with current being extracted at a higher band-gap, thereby allowing to overcome the efficiency limit of single junction devices. A MQFL can be realized either by thin epitaxial layers of alternating higher and lower band gap material with nearly lattice matched (quantum well) or highly lattice mismatched (quantum dot) structure. The thesis identifies the material combination for quantum well structure and calculates the absorption coefficient of a MQFl based on quantum well. GaAsSb (barrier)/InAs(dot) was identified as a candidate material for MQFL using quantum dot. The thesis explains the growth mechanism of GaAsSb and the optimization of GaAsSb and GaAs heterointerface.
ContributorsGhosha, Kuṇāla (Author) / Bowden, Stuart (Thesis advisor) / Honsberg, Christiana (Thesis advisor) / Vasileska, Dragica (Committee member) / Goodnick, Stephen (Committee member) / Arizona State University (Publisher)
Created2011
150317-Thumbnail Image.png
Description
To address sustainability issues in wastewater treatment (WWT), Siemens Water Technologies (SWT) has designed a "hybrid" process that couples common activated sludge (AS) and anaerobic digestion (AD) technologies with the novel concepts of AD sludge recycle and biosorption. At least 85% of the hybrid's AD sludge is recycled to the

To address sustainability issues in wastewater treatment (WWT), Siemens Water Technologies (SWT) has designed a "hybrid" process that couples common activated sludge (AS) and anaerobic digestion (AD) technologies with the novel concepts of AD sludge recycle and biosorption. At least 85% of the hybrid's AD sludge is recycled to the AS process, providing additional sorbent for influent particulate chemical oxygen demand (PCOD) biosorption in contact tanks. Biosorbed PCOD is transported to the AD, where it is converted to methane. The aim of this study is to provide mass balance and microbial community analysis (MCA) of SWT's two hybrid and one conventional pilot plant trains and mathematical modeling of the hybrid process including a novel model of biosorption. A detailed mass balance was performed on each tank and the overall system. The mass balance data supports the hybrid process is more sustainable: It produces 1.5 to 5.5x more methane and 50 to 83% less sludge than the conventional train. The hybrid's superior performance is driven by 4 to 8 times longer solid retention times (SRTs) as compared to conventional trains. However, the conversion of influent COD to methane was low at 15 to 22%, and neither train exhibited significant nitrification or denitrification. Data were inconclusive as to the role of biosorption in the processes. MCA indicated the presence of Archaea and nitrifiers throughout both systems. However, it is inconclusive as to how active Archaea and nitrifiers are under anoxic, aerobic, and anaerobic conditions. Mathematical modeling confirms the hybrid process produces 4 to 20 times more methane and 20 to 83% less sludge than the conventional train under various operating conditions. Neither process removes more than 25% of the influent nitrogen or converts more that 13% to nitrogen gas due to biomass washout in the contact tank and short SRTs in the stabilization tank. In addition, a mathematical relationship was developed to describe PCOD biosorption through adsorption to biomass and floc entrapment. Ultimately, process performance is more heavily influenced by the higher AD SRTs attained when sludge is recycled through the system and less influenced by the inclusion of biosorption kinetics.
ContributorsYoung, Michelle Nichole (Author) / Rittmann, Bruce E. (Thesis advisor) / Fox, Peter (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Arizona State University (Publisher)
Created2011
150342-Thumbnail Image.png
Description
Building Applied Photovoltaics (BAPV) form an essential part of today's solar economy. This thesis is an effort to compare and understand the effect of fan cooling on the temperature of rooftop photovoltaic (PV) modules by comparing two side-by-side arrays (test array and control array) under identical ambient conditions of irradiance,

Building Applied Photovoltaics (BAPV) form an essential part of today's solar economy. This thesis is an effort to compare and understand the effect of fan cooling on the temperature of rooftop photovoltaic (PV) modules by comparing two side-by-side arrays (test array and control array) under identical ambient conditions of irradiance, air temperature, wind speed and wind direction. The lower operating temperature of PV modules due to fan operation mitigates array non uniformity and improves on performance. A crystalline silicon (c-Si) PV module has a light to electrical conversion efficiency of 14-20%. So on a cool sunny day with incident solar irradiance of 1000 W/m2, a PV module with 15% efficiency, will produce about only 150 watts. The rest of the energy is primarily lost in the form of heat. Heat extraction methods for BAPV systems may become increasingly higher in demand as the hot stagnant air underneath the array can be extracted to improve the array efficiency and the extracted low-temperature heat can also be used for residential space heating and water heating. Poly c-Si modules experience a negative temperature coefficient of power at about -0.5% /o C. A typical poly c-Si module would experience power loss due to elevation in temperature, which may be in the range of 25 to 30% for desert conditions such as that of Mesa, Arizona. This thesis investigates the effect of fan cooling on the previously developed thermal models at Arizona State University and on the performance of PV modules/arrays. Ambient conditions are continuously monitored and collected to calculate module temperature using the thermal model and to compare with actually measured temperature of individual modules. Including baseline analysis, the thesis has also looked into the effect of fan on the test array in three stages of 14 continuous days each. Multiple Thermal models are developed in order to identify the effect of fan cooling on performance and temperature uniformity. Although the fan did not prove to have much significant cooling effect on the system, but when combined with wind blocks it helped improve the thermal mismatch both under low and high wind speed conditions.
ContributorsChatterjee, Saurabh (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Rogers, Bradley (Committee member) / Macia, Narciso (Committee member) / Arizona State University (Publisher)
Created2011
150405-Thumbnail Image.png
Description
Infant mortality rate of field deployed photovoltaic (PV) modules may be expected to be higher than that estimated by standard qualification tests. The reason for increased failure rates may be attributed to the high system voltages. High voltages (HV) in grid connected modules induce additional stress factors that cause new

Infant mortality rate of field deployed photovoltaic (PV) modules may be expected to be higher than that estimated by standard qualification tests. The reason for increased failure rates may be attributed to the high system voltages. High voltages (HV) in grid connected modules induce additional stress factors that cause new degradation mechanisms. These new degradation mechanisms are not recognized by qualification stress tests. To study and model the effect of high system voltages, recently, potential induced degradation (PID) test method has been introduced. Using PID studies, it has been reported that high voltage failure rates are essentially due to increased leakage currents from active semiconducting layer to the grounded module frame, through encapsulant and/or glass. This project involved designing and commissioning of a new PID test bed at Photovoltaic Reliability Laboratory (PRL) of Arizona State University (ASU) to study the mechanisms of HV induced degradation. In this study, PID stress tests have been performed on accelerated stress modules, in addition to fresh modules of crystalline silicon technology. Accelerated stressing includes thermal cycling (TC200 cycles) and damp heat (1000 hours) tests as per IEC 61215. Failure rates in field deployed modules that are exposed to long term weather conditions are better simulated by conducting HV tests on prior accelerated stress tested modules. The PID testing was performed in 3 phases on a set of 5 mono crystalline silicon modules. In Phase-I of PID test, a positive bias of +600 V was applied, between shorted leads and frame of each module, on 3 modules with conducting carbon coating on glass superstrate. The 3 module set was comprised of: 1 fresh control, TC200 and DH1000. The PID test was conducted in an environmental chamber by stressing the modules at 85°C, for 35 hours with an intermittent evaluation for Arrhenius effects. In the Phase-II, a negative bias of -600 V was applied on a set of 3 modules in the chamber as defined above. The 3 module set in phase-II was comprised of: control module from phase-I, TC200 and DH1000. In the Phase-III, the same set of 3 modules which were used in the phase-II again subjected to +600 V bias to observe the recovery of lost power during the Phase-II. Electrical performance, infrared (IR) and electroluminescence (EL) were done prior and post PID testing. It was observed that high voltage positive bias in the first phase resulted in little
o power loss, high voltage negative bias in the second phase caused significant power loss and the high voltage positive bias in the third phase resulted in major recovery of lost power.
ContributorsGoranti, Sandhya (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Rogers, Bradley (Committee member) / Macia, Narciso (Committee member) / Arizona State University (Publisher)
Created2011