Matching Items (6)
Filtering by

Clear all filters

150075-Thumbnail Image.png
Description
The long wavelength infrared region (LWIR) and mid wavelength infrared region (MWIR) are of great interest as detection in this region offers a wide range of real time applications. Optoelectronic devices operating in the LWIR and MWIR region offer potential applications such as; optical gas sensing, free-space optical communications, infrared

The long wavelength infrared region (LWIR) and mid wavelength infrared region (MWIR) are of great interest as detection in this region offers a wide range of real time applications. Optoelectronic devices operating in the LWIR and MWIR region offer potential applications such as; optical gas sensing, free-space optical communications, infrared counter-measures, biomedical and thermal imaging etc. HgCdTe is a prominent narrow bandgap material that operates in the LWIR region. The focus of this research work is to simulate and analyze the characteristics of a Hg1-xCdxTe photodetector. To achieve this, the tool `OPTODET' has been developed, where various device parameters can be varied and the resultant output can be analyzed. By the study of output characteristics in response to various changes in device parameters will allow users to understand the considerations that must be made in order to reach the optimum working point of an infrared detector. The tool which has been developed is a 1-D drift diffusion based simulator which solves the 1-D Poisson equation to determine potentials and utilizes the results of the 1-D electron and hole continuity equations to determine current. Parameters such as absorption co-efficient, quantum efficiency, dark current, noise, Transit time and detectivity can be simulated. All major recombination mechanisms such as SRH, Radiative and Auger recombination have been considered. Effects of band to band tunnelling have also been considered to correctly model the dark current characteristics.
ContributorsMuralidharan, Pradyumna (Author) / Vasileska, Dragica (Thesis advisor) / Wijewarnasuriya, Priyalal S. (Committee member) / Zhang, Yong-Hang (Committee member) / Arizona State University (Publisher)
Created2011
151142-Thumbnail Image.png
Description
This dissertation addresses challenges pertaining to multi-junction (MJ) solar cells from material development to device design and characterization. Firstly, among the various methods to improve the energy conversion efficiency of MJ solar cells using, a novel approach proposed recently is to use II-VI (MgZnCd)(SeTe) and III-V (AlGaIn)(AsSb) semiconductors lattice-matched on

This dissertation addresses challenges pertaining to multi-junction (MJ) solar cells from material development to device design and characterization. Firstly, among the various methods to improve the energy conversion efficiency of MJ solar cells using, a novel approach proposed recently is to use II-VI (MgZnCd)(SeTe) and III-V (AlGaIn)(AsSb) semiconductors lattice-matched on GaSb or InAs substrates for current-matched subcells with minimal defect densities. CdSe/CdTe superlattices are proposed as a potential candidate for a subcell in the MJ solar cell designs using this material system, and therefore the material properties of the superlattices are studied. The high structural qualities of the superlattices are obtained from high resolution X-ray diffraction measurements and cross-sectional transmission electron microscopy images. The effective bandgap energies of the superlattices obtained from the photoluminescence (PL) measurements vary with the layer thicknesses, and are smaller than the bandgap energies of either the constituent material. Furthermore, The PL peak position measured at the steady state exhibits a blue shift that increases with the excess carrier concentration. These results confirm a strong type-II band edge alignment between CdSe and CdTe. The valence band offset between unstrained CdSe and CdTe is determined as 0.63 eV±0.06 eV by fitting the measured PL peak positions using the Kronig-Penney model. The blue shift in PL peak position is found to be primarily caused by the band bending effect based on self-consistent solutions of the Schrödinger and Poisson equations. Secondly, the design of the contact grid layout is studied to maximize the power output and energy conversion efficiency for concentrator solar cells. Because the conventional minimum power loss method used for the contact design is not accurate in determining the series resistance loss, a method of using a distributed series resistance model to maximize the power output is proposed for the contact design. It is found that the junction recombination loss in addition to the series resistance loss and shadowing loss can significantly affect the contact layout. The optimal finger spacing and maximum efficiency calculated by the two methods are close, and the differences are dependent on the series resistance and saturation currents of solar cells. Lastly, the accurate measurements of external quantum efficiency (EQE) are important for the design and development of MJ solar cells. However, the electrical and optical couplings between the subcells have caused EQE measurement artifacts. In order to interpret the measurement artifacts, DC and small signal models are built for the bias condition and the scan of chopped monochromatic light in the EQE measurements. Characterization methods are developed for the device parameters used in the models. The EQE measurement artifacts are found to be caused by the shunt and luminescence coupling effects, and can be minimized using proper voltage and light biases. Novel measurement methods using a pulse voltage bias or a pulse light bias are invented to eliminate the EQE measurement artifacts. These measurement methods are nondestructive and easy to implement. The pulse voltage bias or pulse light bias is superimposed on the conventional DC voltage and light biases, in order to control the operating points of the subcells and counterbalance the effects of shunt and luminescence coupling. The methods are demonstrated for the first time to effectively eliminate the measurement artifacts.
ContributorsLi, Jingjing (Author) / Zhang, Yong-Hang (Thesis advisor) / Tao, Meng (Committee member) / Schroder, Dieter (Committee member) / Vasileska, Dragica (Committee member) / Arizona State University (Publisher)
Created2012
157046-Thumbnail Image.png
Description
Wide bandgap (WBG) semiconductors GaN (3.4 eV), Ga2O3 (4.8 eV) and AlN (6.2 eV), have gained considerable interests for energy-efficient optoelectronic and electronic applications in solid-state lighting, photovoltaics, power conversion, and so on. They can offer unique device performance compared with traditional semiconductors such as Si. Efficient GaN based light-emitting

Wide bandgap (WBG) semiconductors GaN (3.4 eV), Ga2O3 (4.8 eV) and AlN (6.2 eV), have gained considerable interests for energy-efficient optoelectronic and electronic applications in solid-state lighting, photovoltaics, power conversion, and so on. They can offer unique device performance compared with traditional semiconductors such as Si. Efficient GaN based light-emitting diodes (LEDs) have increasingly displaced incandescent and fluorescent bulbs as the new major light sources for lighting and display. In addition, due to their large bandgap and high critical electrical field, WBG semiconductors are also ideal candidates for efficient power conversion.

In this dissertation, two types of devices are demonstrated: optoelectronic and electronic devices. Commercial polar c-plane LEDs suffer from reduced efficiency with increasing current densities, knowns as “efficiency droop”, while nonpolar/semipolar LEDs exhibit a very low efficiency droop. A modified ABC model with weak phase space filling effects is proposed to explain the low droop performance, providing insights for designing droop-free LEDs. The other emerging optoelectronics is nonpolar/semipolar III-nitride intersubband transition (ISBT) based photodetectors in terahertz and far infrared regime due to the large optical phonon energy and band offset, and the potential of room-temperature operation. ISBT properties are systematically studied for devices with different structures parameters.

In terms of electronic devices, vertical GaN p-n diodes and Schottky barrier diodes (SBDs) with high breakdown voltages are homoepitaxially grown on GaN bulk substrates with much reduced defect densities and improved device performance. The advantages of the vertical structure over the lateral structure are multifold: smaller chip area, larger current, less sensitivity to surface states, better scalability, and smaller current dispersion. Three methods are proposed to boost the device performances: thick buffer layer design, hydrogen-plasma based edge termination technique, and multiple drift layer design. In addition, newly emerged Ga2O3 and AlN power electronics may outperform GaN devices. Because of the highly anisotropic crystal structure of Ga2O3, anisotropic electrical properties have been observed in Ga2O3 electronics. The first 1-kV-class AlN SBDs are demonstrated on cost-effective sapphire substrates. Several future topics are also proposed including selective-area doping in GaN power devices, vertical AlN power devices, and (Al,Ga,In)2O3 materials and devices.
ContributorsFu, Houqiang (Author) / Zhao, Yuji (Thesis advisor) / Vasileska, Dragica (Committee member) / Goodnick, Stephen (Committee member) / Yu, Hongbin (Committee member) / Wang, Liping (Committee member) / Arizona State University (Publisher)
Created2019
155906-Thumbnail Image.png
Description
Light Emitting Diodes even with their longer life, robust build and low power consumption, they are still plagued by some problems the most significant of which are the current droop and thermal droop. Current droop causes a lowering in the Internal Quantum Efficiency with increased current injection while thermal droo

Light Emitting Diodes even with their longer life, robust build and low power consumption, they are still plagued by some problems the most significant of which are the current droop and thermal droop. Current droop causes a lowering in the Internal Quantum Efficiency with increased current injection while thermal droop lowers the whole Internal Quantum Efficiency curve with increase in temperature. The focus here was understanding effects of thermal droop and develop a method to control it.

Shockley Read Hall recombination plays a dominant role in the thermal droop effect when the current injection is low. Since the blue light emitting diode is based on Gallium Nitride, we need to take into consideration the effect of piezoelectric polarization in the quantum wells. The effects of the piezoelectric fields were studied based on the Gallium Nitride plane orientations. It was found in a Gallium Nitride light emitting diodes simulation study that more the number of quantum wells, lower would be the Radiative recombination rate. The problem of exacerbated spatial separation of electron hole wavefunctions in a thick single quantum well structure lead to the development of a dual well structure where one well assisted the other during high temperature operations. The Electron Blocking Layer was reduced in thickness and was made only 10 nm thick with a 5 nm Gallium Nitride buffer between it and the active region wells. The main reason for reducing the electron blocking layer thickness was to reduce the valance band offset and improve hole transport into the active region. Three different dual well designs were simulated of 3nm, 6nm and 9nm wide wells. The output parameters like the Power Spectral Density, Electron bound density, Light Output Power and Electron-Hole wavefunction overlaps were calculated. It was found that one of the wells acted as an assisting well where it had very little radiative recombination activity in it at room temperature.

As the temperature increased, it was observed that the electrons in the main well started to overflow out of it and into the assisting well where the radiative recombination rate increased significantly. This lead to a boost in Internal Quantum Efficiency.
ContributorsDas, Shiladitya (Author) / Zhao, Yuji (Thesis advisor) / Vasileska, Dragica (Committee member) / Ning, Cun-Zheng (Committee member) / Arizona State University (Publisher)
Created2017
158089-Thumbnail Image.png
Description
Wurtzite (In, Ga, Al) N semiconductors, especially InGaN material systems, demonstrate immense promises for the high efficiency thin film photovoltaic (PV) applications for future generation. Their unique and intriguing merits include continuously tunable wide band gap from 0.70 eV to 3.4 eV, strong absorption coefficient on the order of ∼105

Wurtzite (In, Ga, Al) N semiconductors, especially InGaN material systems, demonstrate immense promises for the high efficiency thin film photovoltaic (PV) applications for future generation. Their unique and intriguing merits include continuously tunable wide band gap from 0.70 eV to 3.4 eV, strong absorption coefficient on the order of ∼105 cm−1, superior radiation resistance under harsh environment, and high saturation velocities and high mobility. Calculation from the detailed balance model also revealed that in multi-junction (MJ) solar cell device, materials with band gaps higher than 2.4 eV are required to achieve PV efficiencies greater than 50%, which is practically and easily feasible for InGaN materials. Other state-of-art modeling on InGaN solar cells also demonstrate great potential for applications of III-nitride solar cells in four-junction solar cell devices as well as in the integration with a non-III-nitride junction in multi-junction devices.

This dissertation first theoretically analyzed loss mechanisms and studied the theoretical limit of PV performance of InGaN solar cells with a semi-analytical model. Then three device design strategies are proposed to study and improve PV performance: band polarization engineering, structural design and band engineering. Moreover, three physical mechanisms related to high temperature performance of InGaN solar cells have been thoroughly investigated: thermal reliability issue, enhanced external quantum efficiency (EQE) and conversion efficiency with rising temperatures and carrier dynamics and localization effects inside nonpolar m-plane InGaN quantum wells (QWs) at high temperatures. In the end several future work will also be proposed.

Although still in its infancy, past and projected future progress of device design will ultimately achieve this very goal that III-nitride based solar cells will be indispensable for today and future’s society, technologies and society.
ContributorsHuang, Xuanqi (Author) / Zhao, Yuji (Thesis advisor) / Goodnick, Stephen M. (Committee member) / King, Richard R. (Committee member) / Vasileska, Dragica (Committee member) / Arizona State University (Publisher)
Created2020
158605-Thumbnail Image.png
Description
Advanced and mature computer simulation methods exist in fluid dynamics, elec-

tromagnetics, semiconductors, chemical transport, and even chemical and material

electronic structure. However, few general or accurate methods have been developed

for quantum photonic devices. Here, a novel approach utilizing phase-space quantum

mechanics is developed to model photon transport in ring resonators, a form

Advanced and mature computer simulation methods exist in fluid dynamics, elec-

tromagnetics, semiconductors, chemical transport, and even chemical and material

electronic structure. However, few general or accurate methods have been developed

for quantum photonic devices. Here, a novel approach utilizing phase-space quantum

mechanics is developed to model photon transport in ring resonators, a form of en-

tangled pair source. The key features the model needs to illustrate are the emergence

of non-classicality and entanglement between photons due to nonlinear effects in the

ring. The quantum trajectory method is subsequently demonstrated on a sequence

of elementary models and multiple aspects of the ring resonator itself.
ContributorsWelland, Ian Matthew (Author) / Ferry, David K. (Thesis advisor) / Goodnick, Stephen (Thesis advisor) / Zhao, Yuji (Committee member) / Vasileska, Dragica (Committee member) / Arizona State University (Publisher)
Created2020