Matching Items (2)
Filtering by

Clear all filters

152944-Thumbnail Image.png
Description
Protein affinity reagents have aptly gained profound importance as capture reagents and

drugs in basic research, biotechnology, diagnostics and therapeutics. However, due to the

cost, labor and time associated with production of antibodies focus has recently changed

towards potential of peptides to act as protein affinity reagents.

Protein affinity reagents have aptly gained profound importance as capture reagents and

drugs in basic research, biotechnology, diagnostics and therapeutics. However, due to the

cost, labor and time associated with production of antibodies focus has recently changed

towards potential of peptides to act as protein affinity reagents. Affinity peptides are easy

to work with, non-immunogenic, cost effective and amenable to scale up. Even though

researchers have developed several affinity peptides, we are far from compiling library of

peptides that encompasses entire human proteome. My thesis describes high throughput

pipeline that can be used to develop and characterize affinity peptides that bind several

discrete sites on target proteins.

Chapter 2 describes optimization of cell-free protein expression using commercially

available translation systems and well-known leader sequences. Presence of internal

ribosome entry site upstream of coding region allows maximal expression in HeLa cell

lysate whereas translation enhancing elements are best suited for expression in rabbit

reticulocyte lysate and wheat germ extract. Use of optimal vector and cell lysate

combination ensures maximum protein expression of DNA libraries.

Chapter 3 describes mRNA display selection methodology for developing affinity peptides

for target proteins using large diversity DNA libraries. I demonstrate that mild denaturant

is not sufficient to increase selection pressure for up to three rounds of selection and

increasing number of selection rounds increases probability of finding affinity peptide s.

These studies enhance fundamental understanding of mRNA display and pave the way

for future optimizations to accelerate convergence of in vitro selections.

Chapter 4 describes a high throughput double membrane dot blot system to rapidly

screen, identify and characterize affinity peptides obtained from selection output. I used

dot blot to screen potential affinity peptides from large diversity of previously

ii

uncharacterized mRNA display selection output. Further characterization of potential

peptides allowed determination of several high affinity peptides from having Kd range 150-

450 nM. Double membrane dot blot is automation amenable, easy and affordable solution

for analyzing selection output and characterizing peptides without ne ed for much

instrumentation.

Together these projects serve as guideline for evolution of cost effective high throughput

pipeline for identification and characterization of affinity peptides.
ContributorsShah, Pankti (Author) / Chaput, John (Thesis advisor) / Hecht, Sidney (Committee member) / Wachter, Rebekka (Committee member) / Arizona State University (Publisher)
Created2014
152875-Thumbnail Image.png
Description
Protein-surface interactions, no matter structured or unstructured, are important in both biological and man-made systems. Unstructured interactions are more difficult to study with conventional techniques due to the lack of a specific binding structure. In this dissertation, a novel approach is employed to study the unstructured interactions between proteins and

Protein-surface interactions, no matter structured or unstructured, are important in both biological and man-made systems. Unstructured interactions are more difficult to study with conventional techniques due to the lack of a specific binding structure. In this dissertation, a novel approach is employed to study the unstructured interactions between proteins and heterogonous surfaces, by looking at a large number of different binding partners at surfaces and using the binding information to understand the chemistry of binding. In this regard, surface-bound peptide arrays are used as a model for the study. Specifically, in Chapter 2, the effects of charge, hydrophobicity and length of surface-bound peptides on binding affinity for specific globular proteins (&beta-galactosidase and &alpha1-antitrypsin) and relative binding of different proteins were examined with LC Sciences peptide array platform. While the general charge and hydrophobicity of the peptides are certainly important, more surprising is that &beta-galactosidase affinity for the surface does not simply increase with the length of the peptide. Another interesting observation that leads to the next part of the study is that even very short surface-bound peptides can have both strong and selective interactions with proteins. Hence, in Chapter 3, selected tetrapeptide sequences with known binding characteristics to &beta-galactosidase are used as building blocks to create longer sequences to see if the binding function can be added together. The conclusion is that while adding two component sequences together can either greatly increase or decrease overall binding and specificity, the contribution to the binding affinity and specificity of the individual binding components is strongly dependent on their position in the peptide. Finally, in Chapter 4, another array platform is utilized to overcome the limitations associated with LC Sciences. It is found that effects of peptide sequence properties on IgG binding with HealthTell array are quiet similar to what was observed with &beta-galactosidase on LC Science array surface. In summary, the approach presented in this dissertation can provide binding information for both structured and unstructured interactions taking place at complex surfaces and has the potential to help develop surfaces covered with specific short peptide sequences with relatively specific protein interaction profiles.
ContributorsWang, Wei (Author) / Woodbury, Neal W (Thesis advisor) / Liu, Yan (Committee member) / Chaput, John (Committee member) / Arizona State University (Publisher)
Created2014