Matching Items (5)
Filtering by

Clear all filters

150208-Thumbnail Image.png
Description
Pulse Density Modulation- (PDM-) based class-D amplifiers can reduce non-linearity and tonal content due to carrier signal in Pulse Width Modulation - (PWM-) based amplifiers. However, their low-voltage analog implementations also require a linear- loop filter and a quantizer. A PDM-based class-D audio amplifier using a frequency-domain quantization is presented

Pulse Density Modulation- (PDM-) based class-D amplifiers can reduce non-linearity and tonal content due to carrier signal in Pulse Width Modulation - (PWM-) based amplifiers. However, their low-voltage analog implementations also require a linear- loop filter and a quantizer. A PDM-based class-D audio amplifier using a frequency-domain quantization is presented in this paper. The digital-intensive frequency domain approach achieves high linearity under low-supply regimes. An analog comparator and a single-bit quantizer are replaced with a Current-Controlled Oscillator- (ICO-) based frequency discriminator. By using the ICO as a phase integrator, a third-order noise shaping is achieved using only two analog integrators. A single-loop, singlebit class-D audio amplifier is presented with an H-bridge switching power stage, which is designed and fabricated on a 0.18 um CMOS process, with 6 layers of metal achieving a total harmonic distortion plus noise (THD+N) of 0.065% and a peak power efficiency of 80% while driving a 4-ohms loudspeaker load. The amplifier can deliver the output power of 280 mW.
ContributorsLee, Junghan (Author) / Bakkaloglu, Bertan (Thesis advisor) / Kiaei, Sayfe (Committee member) / Ozev, Sule (Committee member) / Song, Hongjiang (Committee member) / Arizona State University (Publisher)
Created2011
150274-Thumbnail Image.png
Description
Voltage Control Oscillator (VCO) is one of the most critical blocks in Phase Lock Loops (PLLs). LC-tank VCOs have a superior phase noise performance, however they require bulky passive resonators and often calibration architectures to overcome their limited tuning range. Ring oscillator (RO) based VCOs are attractive for digital technology

Voltage Control Oscillator (VCO) is one of the most critical blocks in Phase Lock Loops (PLLs). LC-tank VCOs have a superior phase noise performance, however they require bulky passive resonators and often calibration architectures to overcome their limited tuning range. Ring oscillator (RO) based VCOs are attractive for digital technology applications owing to their ease of integration, small die area and scalability in deep submicron processes. However, due to their supply sensitivity and poor phase noise performance, they have limited use in applications demanding low phase noise floor, such as wireless or optical transceivers. Particularly, out-of-band phase noise of RO-based PLLs is dominated by RO performance, which cannot be suppressed by the loop gain, impairing RF receiver's sensitivity or BER of optical clock-data recovery circuits. Wide loop bandwidth PLLs can overcome RO noise penalty, however, they suffer from increased in-band noise due to reference clock, phase-detector and charge-pump. The RO phase noise is determined by the noise coming from active devices, supply, ground and substrate. The authors adopt an auxiliary circuit with inverse delay sensitivity to supply noise, which compensates for the delay variation of inverter cells. Feed-forward noise-cancelling architecture that improves phase noise characteristic of RO based PLLs is presented. The proposed circuit dynamically attenuates RO phase noise contribution outside the PLL bandwidth, or in a preferred band. The implemented noise-cancelling loop potentially enables application of RO based PLL for demanding frequency synthesizers applications, such as optical links or high-speed serial I/Os.
ContributorsMin, Seungkee (Author) / Kiaei, Sayfe (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Ozev, Sule (Committee member) / Towe, Bruce (Committee member) / Arizona State University (Publisher)
Created2011
156222-Thumbnail Image.png
Description
The increase in computing power has simultaneously increased the demand for input/output (I/O) bandwidth. Unfortunately, the speed of I/O and memory interconnects have not kept pace. Thus, processor-based systems are I/O and interconnect limited. The memory aggregated bandwidth is not scaling fast enough to keep up with increasing bandwidth demands.

The increase in computing power has simultaneously increased the demand for input/output (I/O) bandwidth. Unfortunately, the speed of I/O and memory interconnects have not kept pace. Thus, processor-based systems are I/O and interconnect limited. The memory aggregated bandwidth is not scaling fast enough to keep up with increasing bandwidth demands. The term "memory wall" has been coined to describe this phenomenon.

A new memory bus concept that has the potential to push double data rate (DDR) memory speed to 30 Gbit/s is presented. We propose to map the conventional DDR bus to a microwave link using a multicarrier frequency division multiplexing scheme. The memory bus is formed using a microwave signal carried within a waveguide. We call this approach multicarrier memory channel architecture (MCMCA). In MCMCA, each memory signal is modulated onto an RF carrier using 64-QAM format or higher. The carriers are then routed using substrate integrated waveguide (SIW) interconnects. At the receiver, the memory signals are demodulated and then delivered to SDRAM devices. We pioneered the usage of SIW as memory channel interconnects and demonstrated that it alleviates the memory bandwidth bottleneck. We demonstrated SIW performance superiority over conventional transmission line in immunity to cross-talk and electromagnetic interference. We developed a methodology based on design of experiment (DOE) and response surface method techniques that optimizes the design of SIW interconnects and minimizes its performance fluctuations under material and manufacturing variations. Along with using SIW, we implemented a multicarrier architecture which enabled the aggregated DDR bandwidth to reach 30 Gbit/s. We developed an end-to-end system model in Simulink and demonstrated the MCMCA performance for ultra-high throughput memory channel.

Experimental characterization of the new channel shows that by using judicious frequency division multiplexing, as few as one SIW interconnect is sufficient to transmit the 64 DDR bits. Overall aggregated bus data rate achieves 240 GBytes/s data transfer with EVM not exceeding 2.26% and phase error of 1.07 degree or less.
ContributorsBensalem, Brahim (Author) / Aberle, James T. (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Tirkas, Panayiotis A. (Committee member) / Kitchen, Jennifer (Committee member) / Arizona State University (Publisher)
Created2018
149370-Thumbnail Image.png
Description
ABSTRACT Ongoing research into wireless transceivers in the 60 GHz band is required to address the demand for high data rate communications systems at a frequency where signal propagation is challenging even over short ranges. This thesis proposes a mixer architecture in Complementary Metal Oxide Semiconductor (CMOS) technology that uses

ABSTRACT Ongoing research into wireless transceivers in the 60 GHz band is required to address the demand for high data rate communications systems at a frequency where signal propagation is challenging even over short ranges. This thesis proposes a mixer architecture in Complementary Metal Oxide Semiconductor (CMOS) technology that uses a voltage controlled oscillator (VCO) operating at a fractional multiple of the desired output signal. The proposed topology is different from conventional subharmonic mixing in that the oscillator phase generation circuitry usually required for such a circuit is unnecessary. Analysis and simulations are performed on the proposed mixer circuit in an IBM 90 nm RF process on a 1.2 V supply. A typical RF transmitter system is considered in determining the block requirements needed for the mixer to meet the IEEE 802.11ad 60 GHz Draft Physical Layer Specification. The proposed circuit has a conversion loss of 21 dB at 60 GHz with a 5 dBm LO power at 20 GHz. Input-referred third-order intercept point (IIP3) is 2.93 dBm. The gain and linearity of the proposed mixer are sufficient for Orthogonal Frequency Division Multiplexing (OFDM) modulation at 60 GHz with a transmitted data rate of over 4 Gbps.
ContributorsMartino, Todd Jeffrey (Author) / Kiaei, Sayfe (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Aberle, James T., 1961- (Committee member) / Arizona State University (Publisher)
Created2010
149327-Thumbnail Image.png
Description
An investigation of phase noise in amplifier and voltage-controller oscillator (VCO) circuits was conducted to show that active direct-current (DC) bias techniques exhibit lower phase noise performance than traditional resistive DC bias techniques. Low-frequency high-gain amplifiers like those found in audio applications exhibit much better 1/f phase noise performance and

An investigation of phase noise in amplifier and voltage-controller oscillator (VCO) circuits was conducted to show that active direct-current (DC) bias techniques exhibit lower phase noise performance than traditional resistive DC bias techniques. Low-frequency high-gain amplifiers like those found in audio applications exhibit much better 1/f phase noise performance and can be used to bias amplifier or VCO circuits that work at much higher frequencies to reduce the phase modulation caused by higher frequency devices. An improvement in single-side-band (SSB) phase noise of 15 dB at offset frequencies less than 50 KHz was simulated and measured. Residual phase noise of an actively biased amplifier also exhibited significant noise improvements when compared to an equivalent resistive biased amplifier.
ContributorsBaldwin, Jeremy Bart (Author) / Aberle, James T., 1961- (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Ozev, Sule (Committee member) / Arizona State University (Publisher)
Created2010