Matching Items (2)

149326-Thumbnail Image.png

A Framework for Top-k queries over weighted RDF graphs

Description

The Resource Description Framework (RDF) is a specification that aims to support the conceptual modeling of metadata or information about resources in the form of a directed graph composed of triples of knowledge (facts). RDF also provides mechanisms to encode

The Resource Description Framework (RDF) is a specification that aims to support the conceptual modeling of metadata or information about resources in the form of a directed graph composed of triples of knowledge (facts). RDF also provides mechanisms to encode meta-information (such as source, trust, and certainty) about facts already existing in a knowledge base through a process called reification. In this thesis, an extension to the current RDF specification is proposed in order to enhance RDF triples with an application specific weight (cost). Unlike reification, this extension treats these additional weights as first class knowledge attributes in the RDF model, which can be leveraged by the underlying query engine. Additionally, current RDF query languages, such as SPARQL, have a limited expressive power which limits the capabilities of applications that use them. Plus, even in the presence of language extensions, current RDF stores could not provide methods and tools to process extended queries in an efficient and effective way. To overcome these limitations, a set of novel primitives for the SPARQL language is proposed to express Top-k queries using traditional query patterns as well as novel predicates inspired by those from the XPath language. Plus, an extended query processor engine is developed to support efficient ranked path search, join, and indexing. In addition, several query optimization strategies are proposed, which employ heuristics, advanced indexing tools, and two graph metrics: proximity and sub-result inter-arrival time. These strategies aim to find join orders that reduce the total query execution time while avoiding worst-case pattern combinations. Finally, extensive experimental evaluation shows that using these two metrics in query optimization has a significant impact on the performance and efficiency of Top-k queries. Further experiments also show that proximity and inter-arrival have an even greater, although sometimes undesirable, impact when combined through aggregation functions. Based on these results, a hybrid algorithm is proposed which acknowledges that proximity is more important than inter-arrival time, due to its more complete nature, and performs a fine-grained combination of both metrics by analyzing the differences between their individual scores and performing the aggregation only if these differences are negligible.

Contributors

Agent

Created

Date Created
2010

153213-Thumbnail Image.png

Distributed SPARQL over big RDF data: a comparative analysis using Presto and MapReduce

Description

The processing of large volumes of RDF data require an efficient storage and query processing engine that can scale well with the volume of data. The initial attempts to address this issue focused on optimizing native RDF stores as

The processing of large volumes of RDF data require an efficient storage and query processing engine that can scale well with the volume of data. The initial attempts to address this issue focused on optimizing native RDF stores as well as conventional relational databases management systems. But as the volume of RDF data grew to exponential proportions, the limitations of these systems became apparent and researchers began to focus on using big data analysis tools, most notably Hadoop, to process RDF data. Various studies and benchmarks that evaluate these tools for RDF data processing have been published. In the past two and half years, however, heavy users of big data systems, like Facebook, noted limitations with the query performance of these big data systems and began to develop new distributed query engines for big data that do not rely on map-reduce. Facebook's Presto is one such example.

This thesis deals with evaluating the performance of Presto in processing big RDF data against Apache Hive. A comparative analysis was also conducted against 4store, a native RDF store. To evaluate the performance Presto for big RDF data processing, a map-reduce program and a compiler, based on Flex and Bison, were implemented. The map-reduce program loads RDF data into HDFS while the compiler translates SPARQL queries into a subset of SQL that Presto (and Hive) can understand. The evaluation was done on four and eight node Linux clusters installed on Microsoft Windows Azure platform with RDF datasets of size 10, 20, and 30 million triples. The results of the experiment show that Presto has a much higher performance than Hive can be used to process big RDF data. The thesis also proposes an architecture based on Presto, Presto-RDF, that can be used to process big RDF data.

Contributors

Agent

Created

Date Created
2014