Matching Items (3)

Filtering by

Clear all filters

154781-Thumbnail Image.png

Sensitivity analysis of longitudinal measurement non-invariance: a second-order latent growth model approach with ordered-categorical indicators

Description

Researchers who conduct longitudinal studies are inherently interested in studying individual and population changes over time (e.g., mathematics achievement, subjective well-being). To answer such research questions, models of change (e.g.,

Researchers who conduct longitudinal studies are inherently interested in studying individual and population changes over time (e.g., mathematics achievement, subjective well-being). To answer such research questions, models of change (e.g., growth models) make the assumption of longitudinal measurement invariance. In many applied situations, key constructs are measured by a collection of ordered-categorical indicators (e.g., Likert scale items). To evaluate longitudinal measurement invariance with ordered-categorical indicators, a set of hierarchical models can be sequentially tested and compared. If the statistical tests of measurement invariance fail to be supported for one of the models, it is useful to have a method with which to gauge the practical significance of the differences in measurement model parameters over time. Drawing on studies of latent growth models and second-order latent growth models with continuous indicators (e.g., Kim & Willson, 2014a; 2014b; Leite, 2007; Wirth, 2008), this study examined the performance of a potential sensitivity analysis to gauge the practical significance of violations of longitudinal measurement invariance for ordered-categorical indicators using second-order latent growth models. The change in the estimate of the second-order growth parameters following the addition of an incorrect level of measurement invariance constraints at the first-order level was used as an effect size for measurement non-invariance. This study investigated how sensitive the proposed sensitivity analysis was to different locations of non-invariance (i.e., non-invariance in the factor loadings, the thresholds, and the unique factor variances) given a sufficient sample size. This study also examined whether the sensitivity of the proposed sensitivity analysis depended on a number of other factors including the magnitude of non-invariance, the number of non-invariant indicators, the number of non-invariant occasions, and the number of response categories in the indicators.

Contributors

Agent

Created

Date Created
  • 2016

151957-Thumbnail Image.png

Propensity score estimation with random forests

Description

Random Forests is a statistical learning method which has been proposed for propensity score estimation models that involve complex interactions, nonlinear relationships, or both of the covariates. In this dissertation

Random Forests is a statistical learning method which has been proposed for propensity score estimation models that involve complex interactions, nonlinear relationships, or both of the covariates. In this dissertation I conducted a simulation study to examine the effects of three Random Forests model specifications in propensity score analysis. The results suggested that, depending on the nature of data, optimal specification of (1) decision rules to select the covariate and its split value in a Classification Tree, (2) the number of covariates randomly sampled for selection, and (3) methods of estimating Random Forests propensity scores could potentially produce an unbiased average treatment effect estimate after propensity scores weighting by the odds adjustment. Compared to the logistic regression estimation model using the true propensity score model, Random Forests had an additional advantage in producing unbiased estimated standard error and correct statistical inference of the average treatment effect. The relationship between the balance on the covariates' means and the bias of average treatment effect estimate was examined both within and between conditions of the simulation. Within conditions, across repeated samples there was no noticeable correlation between the covariates' mean differences and the magnitude of bias of average treatment effect estimate for the covariates that were imbalanced before adjustment. Between conditions, small mean differences of covariates after propensity score adjustment were not sensitive enough to identify the optimal Random Forests model specification for propensity score analysis.

Contributors

Agent

Created

Date Created
  • 2013

153962-Thumbnail Image.png

Planned missing data in mediation analysis

Description

This dissertation examines a planned missing data design in the context of mediational analysis. The study considered a scenario in which the high cost of an expensive mediator limited sample

This dissertation examines a planned missing data design in the context of mediational analysis. The study considered a scenario in which the high cost of an expensive mediator limited sample size, but in which less expensive mediators could be gathered on a larger sample size. Simulated multivariate normal data were generated from a latent variable mediation model with three observed indicator variables, M1, M2, and M3. Planned missingness was implemented on M1 under the missing completely at random mechanism. Five analysis methods were employed: latent variable mediation model with all three mediators as indicators of a latent construct (Method 1), auxiliary variable model with M1 as the mediator and M2 and M3 as auxiliary variables (Method 2), auxiliary variable model with M1 as the mediator and M2 as a single auxiliary variable (Method 3), maximum likelihood estimation including all available data but incorporating only mediator M1 (Method 4), and listwise deletion (Method 5).

The main outcome of interest was empirical power to detect the mediated effect. The main effects of mediation effect size, sample size, and missing data rate performed as expected with power increasing for increasing mediation effect sizes, increasing sample sizes, and decreasing missing data rates. Consistent with expectations, power was the greatest for analysis methods that included all three mediators, and power decreased with analysis methods that included less information. Across all design cells relative to the complete data condition, Method 1 with 20% missingness on M1 produced only 2.06% loss in power for the mediated effect; with 50% missingness, 6.02% loss; and 80% missingess, only 11.86% loss. Method 2 exhibited 20.72% power loss at 80% missingness, even though the total amount of data utilized was the same as Method 1. Methods 3 – 5 exhibited greater power loss. Compared to an average power loss of 11.55% across all levels of missingness for Method 1, average power losses for Methods 3, 4, and 5 were 23.87%, 29.35%, and 32.40%, respectively. In conclusion, planned missingness in a multiple mediator design may permit higher quality characterization of the mediator construct at feasible cost.

Contributors

Agent

Created

Date Created
  • 2015