Matching Items (9)
Filtering by

Clear all filters

151719-Thumbnail Image.png
Description
Including a covariate can increase power to detect an effect between two variables. Although previous research has studied power in mediation models, the extent to which the inclusion of a mediator will increase the power to detect a relation between two variables has not been investigated. The first study identified

Including a covariate can increase power to detect an effect between two variables. Although previous research has studied power in mediation models, the extent to which the inclusion of a mediator will increase the power to detect a relation between two variables has not been investigated. The first study identified situations where empirical and analytical power of two tests of significance for a single mediator model was greater than power of a bivariate significance test. Results from the first study indicated that including a mediator increased statistical power in small samples with large effects and in large samples with small effects. Next, a study was conducted to assess when power was greater for a significance test for a two mediator model as compared with power of a bivariate significance test. Results indicated that including two mediators increased power in small samples when both specific mediated effects were large and in large samples when both specific mediated effects were small. Implications of the results and directions for future research are then discussed.
ContributorsO'Rourke, Holly Patricia (Author) / Mackinnon, David P (Thesis advisor) / Enders, Craig K. (Committee member) / Millsap, Roger (Committee member) / Arizona State University (Publisher)
Created2013
153461-Thumbnail Image.png
Description
Methods to test hypotheses of mediated effects in the pretest-posttest control group design are understudied in the behavioral sciences (MacKinnon, 2008). Because many studies aim to answer questions about mediating processes in the pretest-posttest control group design, there is a need to determine which model is most appropriate to

Methods to test hypotheses of mediated effects in the pretest-posttest control group design are understudied in the behavioral sciences (MacKinnon, 2008). Because many studies aim to answer questions about mediating processes in the pretest-posttest control group design, there is a need to determine which model is most appropriate to test hypotheses about mediating processes and what happens to estimates of the mediated effect when model assumptions are violated in this design. The goal of this project was to outline estimator characteristics of four longitudinal mediation models and the cross-sectional mediation model. Models were compared on type 1 error rates, statistical power, accuracy of confidence interval coverage, and bias of parameter estimates. Four traditional longitudinal models and the cross-sectional model were assessed. The four longitudinal models were analysis of covariance (ANCOVA) using pretest scores as a covariate, path analysis, difference scores, and residualized change scores. A Monte Carlo simulation study was conducted to evaluate the different models across a wide range of sample sizes and effect sizes. All models performed well in terms of type 1 error rates and the ANCOVA and path analysis models performed best in terms of bias and empirical power. The difference score, residualized change score, and cross-sectional models all performed well given certain conditions held about the pretest measures. These conditions and future directions are discussed.
ContributorsValente, Matthew John (Author) / MacKinnon, David (Thesis advisor) / West, Stephen (Committee member) / Aiken, Leona (Committee member) / Enders, Craig (Committee member) / Arizona State University (Publisher)
Created2015
152985-Thumbnail Image.png
Description
Research methods based on the frequentist philosophy use prior information in a priori power calculations and when determining the necessary sample size for the detection of an effect, but not in statistical analyses. Bayesian methods incorporate prior knowledge into the statistical analysis in the form of a prior distribution. When

Research methods based on the frequentist philosophy use prior information in a priori power calculations and when determining the necessary sample size for the detection of an effect, but not in statistical analyses. Bayesian methods incorporate prior knowledge into the statistical analysis in the form of a prior distribution. When prior information about a relationship is available, the estimates obtained could differ drastically depending on the choice of Bayesian or frequentist method. Study 1 in this project compared the performance of five methods for obtaining interval estimates of the mediated effect in terms of coverage, Type I error rate, empirical power, interval imbalance, and interval width at N = 20, 40, 60, 100 and 500. In Study 1, Bayesian methods with informative prior distributions performed almost identically to Bayesian methods with diffuse prior distributions, and had more power than normal theory confidence limits, lower Type I error rates than the percentile bootstrap, and coverage, interval width, and imbalance comparable to normal theory, percentile bootstrap, and the bias-corrected bootstrap confidence limits. Study 2 evaluated if a Bayesian method with true parameter values as prior information outperforms the other methods. The findings indicate that with true values of parameters as the prior information, Bayesian credibility intervals with informative prior distributions have more power, less imbalance, and narrower intervals than Bayesian credibility intervals with diffuse prior distributions, normal theory, percentile bootstrap, and bias-corrected bootstrap confidence limits. Study 3 examined how much power increases when increasing the precision of the prior distribution by a factor of ten for either the action or the conceptual path in mediation analysis. Power generally increases with increases in precision but there are many sample size and parameter value combinations where precision increases by a factor of 10 do not lead to substantial increases in power.
ContributorsMiocevic, Milica (Author) / Mackinnon, David P. (Thesis advisor) / Levy, Roy (Committee member) / West, Stephen G. (Committee member) / Enders, Craig (Committee member) / Arizona State University (Publisher)
Created2014
154088-Thumbnail Image.png
Description
Researchers are often interested in estimating interactions in multilevel models, but many researchers assume that the same procedures and interpretations for interactions in single-level models apply to multilevel models. However, estimating interactions in multilevel models is much more complex than in single-level models. Because uncentered (RAS) or grand

Researchers are often interested in estimating interactions in multilevel models, but many researchers assume that the same procedures and interpretations for interactions in single-level models apply to multilevel models. However, estimating interactions in multilevel models is much more complex than in single-level models. Because uncentered (RAS) or grand mean centered (CGM) level-1 predictors in two-level models contain two sources of variability (i.e., within-cluster variability and between-cluster variability), interactions involving RAS or CGM level-1 predictors also contain more than one source of variability. In this Master’s thesis, I use simulations to demonstrate that ignoring the four sources of variability in a total level-1 interaction effect can lead to erroneous conclusions. I explain how to parse a total level-1 interaction effect into four specific interaction effects, derive equivalencies between CGM and centering within context (CWC) for this model, and describe how the interpretations of the fixed effects change under CGM and CWC. Finally, I provide an empirical example using diary data collected from working adults with chronic pain.
ContributorsMazza, Gina L (Author) / Enders, Craig K. (Thesis advisor) / Aiken, Leona S. (Thesis advisor) / West, Stephen G. (Committee member) / Arizona State University (Publisher)
Created2015
154498-Thumbnail Image.png
Description
A simulation study was conducted to explore the influence of partial loading invariance and partial intercept invariance on the latent mean comparison of the second-order factor within a higher-order confirmatory factor analysis (CFA) model. Noninvariant loadings or intercepts were generated to be at one of the two levels or both

A simulation study was conducted to explore the influence of partial loading invariance and partial intercept invariance on the latent mean comparison of the second-order factor within a higher-order confirmatory factor analysis (CFA) model. Noninvariant loadings or intercepts were generated to be at one of the two levels or both levels for a second-order CFA model. The numbers and directions of differences in noninvariant loadings or intercepts were also manipulated, along with total sample size and effect size of the second-order factor mean difference. Data were analyzed using correct and incorrect specifications of noninvariant loadings and intercepts. Results summarized across the 5,000 replications in each condition included Type I error rates and powers for the chi-square difference test and the Wald test of the second-order factor mean difference, estimation bias and efficiency for this latent mean difference, and means of the standardized root mean square residual (SRMR) and the root mean square error of approximation (RMSEA).

When the model was correctly specified, no obvious estimation bias was observed; when the model was misspecified by constraining noninvariant loadings or intercepts to be equal, the latent mean difference was overestimated if the direction of the difference in loadings or intercepts of was consistent with the direction of the latent mean difference, and vice versa. Increasing the number of noninvariant loadings or intercepts resulted in larger estimation bias if these noninvariant loadings or intercepts were constrained to be equal. Power to detect the latent mean difference was influenced by estimation bias and the estimated variance of the difference in the second-order factor mean, in addition to sample size and effect size. Constraining more parameters to be equal between groups—even when unequal in the population—led to a decrease in the variance of the estimated latent mean difference, which increased power somewhat. Finally, RMSEA was very sensitive for detecting misspecification due to improper equality constraints in all conditions in the current scenario, including the nonzero latent mean difference, but SRMR did not increase as expected when noninvariant parameters were constrained.
ContributorsLiu, Yixing (Author) / Thompson, Marilyn (Thesis advisor) / Green, Samuel (Committee member) / Levy, Roy (Committee member) / Arizona State University (Publisher)
Created2016
155069-Thumbnail Image.png
Description
This paper investigates a relatively new analysis method for longitudinal data in the framework of functional data analysis. This approach treats longitudinal data as so-called sparse functional data. The first section of the paper introduces functional data and the general ideas of functional data analysis. The second section discusses the

This paper investigates a relatively new analysis method for longitudinal data in the framework of functional data analysis. This approach treats longitudinal data as so-called sparse functional data. The first section of the paper introduces functional data and the general ideas of functional data analysis. The second section discusses the analysis of longitudinal data in the context of functional data analysis, while considering the unique characteristics of longitudinal data such, in particular sparseness and missing data. The third section introduces functional mixed-effects models that can handle these unique characteristics of sparseness and missingness. The next section discusses a preliminary simulation study conducted to examine the performance of a functional mixed-effects model under various conditions. An extended simulation study was carried out to evaluate the estimation accuracy of a functional mixed-effects model. Specifically, the accuracy of the estimated trajectories was examined under various conditions including different types of missing data and varying levels of sparseness.
ContributorsWard, Kimberly l (Author) / Suk, Hye Won (Thesis advisor) / Aiken, Leona (Committee member) / Grimm, Kevin (Committee member) / Arizona State University (Publisher)
Created2016
149323-Thumbnail Image.png
Description
In the past, it has been assumed that measurement and predictive invariance are consistent so that if one form of invariance holds the other form should also hold. However, some studies have proven that both forms of invariance only hold under certain conditions such as factorial invariance and invariance in

In the past, it has been assumed that measurement and predictive invariance are consistent so that if one form of invariance holds the other form should also hold. However, some studies have proven that both forms of invariance only hold under certain conditions such as factorial invariance and invariance in the common factor variances. The present research examined Type I errors and the statistical power of a method that detects violations to the factorial invariant model in the presence of group differences in regression intercepts, under different sample sizes and different number of predictors (one or two). Data were simulated under two models: in model A only differences in the factor means were allowed, while model B violated invariance. A factorial invariant model was fitted to the data. Type I errors were defined as the proportion of samples in which the hypothesis of invariance was incorrectly rejected, and statistical power was defined as the proportion of samples in which the hypothesis of factorial invariance was correctly rejected. In the case of one predictor, the results show that the chi-square statistic has low power to detect violations to the model. Unexpected and systematic results were obtained regarding the negative unique variance in the predictor. It is proposed that negative unique variance in the predictor can be used as indication of measurement bias instead of the chi-square fit statistic with sample sizes of 500 or more. The results of the two predictor case show larger power. In both cases Type I errors were as expected. The implications of the results and some suggestions for increasing the power of the method are provided.
ContributorsAguilar, Margarita Olivera (Author) / Millsap, Roger E. (Thesis advisor) / Aiken, Leona S. (Committee member) / Enders, Craig K. (Committee member) / Arizona State University (Publisher)
Created2010
149352-Thumbnail Image.png
Description
For this thesis a Monte Carlo simulation was conducted to investigate the robustness of three latent interaction modeling approaches (constrained product indicator, generalized appended product indicator (GAPI), and latent moderated structural equations (LMS)) under high degrees of nonnormality of the exogenous indicators, which have not been investigated in previous literature.

For this thesis a Monte Carlo simulation was conducted to investigate the robustness of three latent interaction modeling approaches (constrained product indicator, generalized appended product indicator (GAPI), and latent moderated structural equations (LMS)) under high degrees of nonnormality of the exogenous indicators, which have not been investigated in previous literature. Results showed that the constrained product indicator and LMS approaches yielded biased estimates of the interaction effect when the exogenous indicators were highly nonnormal. When the violation of nonnormality was not severe (symmetric with excess kurtosis < 1), the LMS approach with ML estimation yielded the most precise latent interaction effect estimates. The LMS approach with ML estimation also had the highest statistical power among the three approaches, given that the actual Type-I error rates of the Wald and likelihood ratio test of interaction effect were acceptable. In highly nonnormal conditions, only the GAPI approach with ML estimation yielded unbiased latent interaction effect estimates, with an acceptable actual Type-I error rate of both the Wald test and likelihood ratio test of interaction effect. No support for the use of the Satorra-Bentler or Yuan-Bentler ML corrections was found across all three methods.
ContributorsCham, Hei Ning (Author) / West, Stephen G. (Thesis advisor) / Aiken, Leona S. (Committee member) / Enders, Craig K. (Committee member) / Arizona State University (Publisher)
Created2010
154396-Thumbnail Image.png
Description
Measurement invariance exists when a scale functions equivalently across people and is therefore essential for making meaningful group comparisons. Often, measurement invariance is examined with independent and identically distributed data; however, there are times when the participants are clustered within units, creating dependency in the data. Researchers have taken different

Measurement invariance exists when a scale functions equivalently across people and is therefore essential for making meaningful group comparisons. Often, measurement invariance is examined with independent and identically distributed data; however, there are times when the participants are clustered within units, creating dependency in the data. Researchers have taken different approaches to address this dependency when studying measurement invariance (e.g., Kim, Kwok, & Yoon, 2012; Ryu, 2014; Kim, Yoon, Wen, Luo, & Kwok, 2015), but there are no comparisons of the various approaches. The purpose of this master's thesis was to investigate measurement invariance in multilevel data when the grouping variable was a level-1 variable using five different approaches. Publicly available data from the Early Childhood Longitudinal Study-Kindergarten Cohort (ECLS-K) was used as an illustrative example. The construct of early behavior, which was made up of four teacher-rated behavior scales, was evaluated for measurement invariance in relation to gender. In the specific case of this illustrative example, the statistical conclusions of the five approaches were in agreement (i.e., the loading of the externalizing item and the intercept of the approaches to learning item were not invariant). Simulation work should be done to investigate in which situations the conclusions of these approaches diverge.
ContributorsGunn, Heather (Author) / Grimm, Kevin J. (Thesis advisor) / Aiken, Leona S. (Committee member) / Suk, Hye Won (Committee member) / Arizona State University (Publisher)
Created2016