Matching Items (3)
Filtering by

Clear all filters

151719-Thumbnail Image.png
Description
Including a covariate can increase power to detect an effect between two variables. Although previous research has studied power in mediation models, the extent to which the inclusion of a mediator will increase the power to detect a relation between two variables has not been investigated. The first study identified

Including a covariate can increase power to detect an effect between two variables. Although previous research has studied power in mediation models, the extent to which the inclusion of a mediator will increase the power to detect a relation between two variables has not been investigated. The first study identified situations where empirical and analytical power of two tests of significance for a single mediator model was greater than power of a bivariate significance test. Results from the first study indicated that including a mediator increased statistical power in small samples with large effects and in large samples with small effects. Next, a study was conducted to assess when power was greater for a significance test for a two mediator model as compared with power of a bivariate significance test. Results indicated that including two mediators increased power in small samples when both specific mediated effects were large and in large samples when both specific mediated effects were small. Implications of the results and directions for future research are then discussed.
ContributorsO'Rourke, Holly Patricia (Author) / Mackinnon, David P (Thesis advisor) / Enders, Craig K. (Committee member) / Millsap, Roger (Committee member) / Arizona State University (Publisher)
Created2013
151957-Thumbnail Image.png
Description
Random Forests is a statistical learning method which has been proposed for propensity score estimation models that involve complex interactions, nonlinear relationships, or both of the covariates. In this dissertation I conducted a simulation study to examine the effects of three Random Forests model specifications in propensity score analysis. The

Random Forests is a statistical learning method which has been proposed for propensity score estimation models that involve complex interactions, nonlinear relationships, or both of the covariates. In this dissertation I conducted a simulation study to examine the effects of three Random Forests model specifications in propensity score analysis. The results suggested that, depending on the nature of data, optimal specification of (1) decision rules to select the covariate and its split value in a Classification Tree, (2) the number of covariates randomly sampled for selection, and (3) methods of estimating Random Forests propensity scores could potentially produce an unbiased average treatment effect estimate after propensity scores weighting by the odds adjustment. Compared to the logistic regression estimation model using the true propensity score model, Random Forests had an additional advantage in producing unbiased estimated standard error and correct statistical inference of the average treatment effect. The relationship between the balance on the covariates' means and the bias of average treatment effect estimate was examined both within and between conditions of the simulation. Within conditions, across repeated samples there was no noticeable correlation between the covariates' mean differences and the magnitude of bias of average treatment effect estimate for the covariates that were imbalanced before adjustment. Between conditions, small mean differences of covariates after propensity score adjustment were not sensitive enough to identify the optimal Random Forests model specification for propensity score analysis.
ContributorsCham, Hei Ning (Author) / Tein, Jenn-Yun (Thesis advisor) / Enders, Stephen G (Thesis advisor) / Enders, Craig K. (Committee member) / Mackinnon, David P (Committee member) / Arizona State University (Publisher)
Created2013
152217-Thumbnail Image.png
Description
In investigating mediating processes, researchers usually use randomized experiments and linear regression or structural equation modeling to determine if the treatment affects the hypothesized mediator and if the mediator affects the targeted outcome. However, randomizing the treatment will not yield accurate causal path estimates unless certain assumptions are satisfied. Since

In investigating mediating processes, researchers usually use randomized experiments and linear regression or structural equation modeling to determine if the treatment affects the hypothesized mediator and if the mediator affects the targeted outcome. However, randomizing the treatment will not yield accurate causal path estimates unless certain assumptions are satisfied. Since randomization of the mediator may not be plausible for most studies (i.e., the mediator status is not randomly assigned, but self-selected by participants), both the direct and indirect effects may be biased by confounding variables. The purpose of this dissertation is (1) to investigate the extent to which traditional mediation methods are affected by confounding variables and (2) to assess the statistical performance of several modern methods to address confounding variable effects in mediation analysis. This dissertation first reviewed the theoretical foundations of causal inference in statistical mediation analysis, modern statistical analysis for causal inference, and then described different methods to estimate causal direct and indirect effects in the presence of two post-treatment confounders. A large simulation study was designed to evaluate the extent to which ordinary regression and modern causal inference methods are able to obtain correct estimates of the direct and indirect effects when confounding variables that are present in the population are not included in the analysis. Five methods were compared in terms of bias, relative bias, mean square error, statistical power, Type I error rates, and confidence interval coverage to test how robust the methods are to the violation of the no unmeasured confounders assumption and confounder effect sizes. The methods explored were linear regression with adjustment, inverse propensity weighting, inverse propensity weighting with truncated weights, sequential g-estimation, and a doubly robust sequential g-estimation. Results showed that in estimating the direct and indirect effects, in general, sequential g-estimation performed the best in terms of bias, Type I error rates, power, and coverage across different confounder effect, direct effect, and sample sizes when all confounders were included in the estimation. When one of the two confounders were omitted from the estimation process, in general, none of the methods had acceptable relative bias in the simulation study. Omitting one of the confounders from estimation corresponded to the common case in mediation studies where no measure of a confounder is available but a confounder may affect the analysis. Failing to measure potential post-treatment confounder variables in a mediation model leads to biased estimates regardless of the analysis method used and emphasizes the importance of sensitivity analysis for causal mediation analysis.
ContributorsKisbu Sakarya, Yasemin (Author) / Mackinnon, David Peter (Thesis advisor) / Aiken, Leona (Committee member) / West, Stephen (Committee member) / Millsap, Roger (Committee member) / Arizona State University (Publisher)
Created2013