Matching Items (2)

Filtering by

Clear all filters

149687-Thumbnail Image.png

Modern psychometric theory in clinical assessment

Description

Item response theory (IRT) and related latent variable models represent modern psychometric theory, the successor to classical test theory in psychological assessment. While IRT has become prevalent in the assessment of ability and achievement, it has not been widely embraced

Item response theory (IRT) and related latent variable models represent modern psychometric theory, the successor to classical test theory in psychological assessment. While IRT has become prevalent in the assessment of ability and achievement, it has not been widely embraced by clinical psychologists. This appears due, in part, to psychometrists' use of unidimensional models despite evidence that psychiatric disorders are inherently multidimensional. The construct validity of unidimensional and multidimensional latent variable models was compared to evaluate the utility of modern psychometric theory in clinical assessment. Archival data consisting of 688 outpatients' presenting concerns, psychiatric diagnoses, and item level responses to the Brief Symptom Inventory (BSI) were extracted from files at a university mental health clinic. Confirmatory factor analyses revealed that models with oblique factors and/or item cross-loadings better represented the internal structure of the BSI in comparison to a strictly unidimensional model. The models were generally equivalent in their ability to account for variance in criterion-related validity variables; however, bifactor models demonstrated superior validity in differentiating between mood and anxiety disorder diagnoses. Multidimensional IRT analyses showed that the orthogonal bifactor model partitioned distinct, clinically relevant sources of item variance. Similar results were also achieved through multivariate prediction with an oblique simple structure model. Receiver operating characteristic curves confirmed improved sensitivity and specificity through multidimensional models of psychopathology. Clinical researchers are encouraged to consider these and other comprehensive models of psychological distress.

Contributors

Agent

Created

Date Created
2011

151957-Thumbnail Image.png

Propensity score estimation with random forests

Description

Random Forests is a statistical learning method which has been proposed for propensity score estimation models that involve complex interactions, nonlinear relationships, or both of the covariates. In this dissertation I conducted a simulation study to examine the effects of

Random Forests is a statistical learning method which has been proposed for propensity score estimation models that involve complex interactions, nonlinear relationships, or both of the covariates. In this dissertation I conducted a simulation study to examine the effects of three Random Forests model specifications in propensity score analysis. The results suggested that, depending on the nature of data, optimal specification of (1) decision rules to select the covariate and its split value in a Classification Tree, (2) the number of covariates randomly sampled for selection, and (3) methods of estimating Random Forests propensity scores could potentially produce an unbiased average treatment effect estimate after propensity scores weighting by the odds adjustment. Compared to the logistic regression estimation model using the true propensity score model, Random Forests had an additional advantage in producing unbiased estimated standard error and correct statistical inference of the average treatment effect. The relationship between the balance on the covariates' means and the bias of average treatment effect estimate was examined both within and between conditions of the simulation. Within conditions, across repeated samples there was no noticeable correlation between the covariates' mean differences and the magnitude of bias of average treatment effect estimate for the covariates that were imbalanced before adjustment. Between conditions, small mean differences of covariates after propensity score adjustment were not sensitive enough to identify the optimal Random Forests model specification for propensity score analysis.

Contributors

Agent

Created

Date Created
2013