Matching Items (23)

Filtering by

Clear all filters

149687-Thumbnail Image.png

Modern psychometric theory in clinical assessment

Description

Item response theory (IRT) and related latent variable models represent modern psychometric theory, the successor to classical test theory in psychological assessment. While IRT has become prevalent in the assessment of ability and achievement, it has not been widely embraced

Item response theory (IRT) and related latent variable models represent modern psychometric theory, the successor to classical test theory in psychological assessment. While IRT has become prevalent in the assessment of ability and achievement, it has not been widely embraced by clinical psychologists. This appears due, in part, to psychometrists' use of unidimensional models despite evidence that psychiatric disorders are inherently multidimensional. The construct validity of unidimensional and multidimensional latent variable models was compared to evaluate the utility of modern psychometric theory in clinical assessment. Archival data consisting of 688 outpatients' presenting concerns, psychiatric diagnoses, and item level responses to the Brief Symptom Inventory (BSI) were extracted from files at a university mental health clinic. Confirmatory factor analyses revealed that models with oblique factors and/or item cross-loadings better represented the internal structure of the BSI in comparison to a strictly unidimensional model. The models were generally equivalent in their ability to account for variance in criterion-related validity variables; however, bifactor models demonstrated superior validity in differentiating between mood and anxiety disorder diagnoses. Multidimensional IRT analyses showed that the orthogonal bifactor model partitioned distinct, clinically relevant sources of item variance. Similar results were also achieved through multivariate prediction with an oblique simple structure model. Receiver operating characteristic curves confirmed improved sensitivity and specificity through multidimensional models of psychopathology. Clinical researchers are encouraged to consider these and other comprehensive models of psychological distress.

Contributors

Agent

Created

Date Created
2011

151719-Thumbnail Image.png

Mediation as a novel method for increasing statistical power

Description

Including a covariate can increase power to detect an effect between two variables. Although previous research has studied power in mediation models, the extent to which the inclusion of a mediator will increase the power to detect a relation between

Including a covariate can increase power to detect an effect between two variables. Although previous research has studied power in mediation models, the extent to which the inclusion of a mediator will increase the power to detect a relation between two variables has not been investigated. The first study identified situations where empirical and analytical power of two tests of significance for a single mediator model was greater than power of a bivariate significance test. Results from the first study indicated that including a mediator increased statistical power in small samples with large effects and in large samples with small effects. Next, a study was conducted to assess when power was greater for a significance test for a two mediator model as compared with power of a bivariate significance test. Results indicated that including two mediators increased power in small samples when both specific mediated effects were large and in large samples when both specific mediated effects were small. Implications of the results and directions for future research are then discussed.

Contributors

Agent

Created

Date Created
2013

152217-Thumbnail Image.png

Estimating causal direct and indirect effects in the presence of post-treatment confounders: a simulation study

Description

In investigating mediating processes, researchers usually use randomized experiments and linear regression or structural equation modeling to determine if the treatment affects the hypothesized mediator and if the mediator affects the targeted outcome. However, randomizing the treatment will not yield

In investigating mediating processes, researchers usually use randomized experiments and linear regression or structural equation modeling to determine if the treatment affects the hypothesized mediator and if the mediator affects the targeted outcome. However, randomizing the treatment will not yield accurate causal path estimates unless certain assumptions are satisfied. Since randomization of the mediator may not be plausible for most studies (i.e., the mediator status is not randomly assigned, but self-selected by participants), both the direct and indirect effects may be biased by confounding variables. The purpose of this dissertation is (1) to investigate the extent to which traditional mediation methods are affected by confounding variables and (2) to assess the statistical performance of several modern methods to address confounding variable effects in mediation analysis. This dissertation first reviewed the theoretical foundations of causal inference in statistical mediation analysis, modern statistical analysis for causal inference, and then described different methods to estimate causal direct and indirect effects in the presence of two post-treatment confounders. A large simulation study was designed to evaluate the extent to which ordinary regression and modern causal inference methods are able to obtain correct estimates of the direct and indirect effects when confounding variables that are present in the population are not included in the analysis. Five methods were compared in terms of bias, relative bias, mean square error, statistical power, Type I error rates, and confidence interval coverage to test how robust the methods are to the violation of the no unmeasured confounders assumption and confounder effect sizes. The methods explored were linear regression with adjustment, inverse propensity weighting, inverse propensity weighting with truncated weights, sequential g-estimation, and a doubly robust sequential g-estimation. Results showed that in estimating the direct and indirect effects, in general, sequential g-estimation performed the best in terms of bias, Type I error rates, power, and coverage across different confounder effect, direct effect, and sample sizes when all confounders were included in the estimation. When one of the two confounders were omitted from the estimation process, in general, none of the methods had acceptable relative bias in the simulation study. Omitting one of the confounders from estimation corresponded to the common case in mediation studies where no measure of a confounder is available but a confounder may affect the analysis. Failing to measure potential post-treatment confounder variables in a mediation model leads to biased estimates regardless of the analysis method used and emphasizes the importance of sensitivity analysis for causal mediation analysis.

Contributors

Agent

Created

Date Created
2013

153904-Thumbnail Image.png

Multilevel potential outcome models for causal inference in jury research

Description

Recent advances in hierarchical or multilevel statistical models and causal inference using the potential outcomes framework hold tremendous promise for mock and real jury research. These advances enable researchers to explore how individual jurors can exert a bottom-up effect on

Recent advances in hierarchical or multilevel statistical models and causal inference using the potential outcomes framework hold tremendous promise for mock and real jury research. These advances enable researchers to explore how individual jurors can exert a bottom-up effect on the jury’s verdict and how case-level features can exert a top-down effect on a juror’s perception of the parties at trial. This dissertation explains and then applies these technical advances to a pre-existing mock jury dataset to provide worked examples in an effort to spur the adoption of these techniques. In particular, the paper introduces two new cross-level mediated effects and then describes how to conduct ecological validity tests with these mediated effects. The first cross-level mediated effect, the a1b1 mediated effect, is the juror level mediated effect for a jury level manipulation. The second cross-level mediated effect, the a2bc mediated effect, is the unique contextual effect that being in a jury has on the individual the juror. When a mock jury study includes a deliberation versus non-deliberation manipulation, the a1b1 can be compared for the two conditions, enabling a general test of ecological validity. If deliberating in a group generally influences the individual, then the two indirect effects should be significantly different. The a2bc can also be interpreted as a specific test of how much changes in jury level means of this specific mediator effect juror level decision-making.

Contributors

Agent

Created

Date Created
2015

151957-Thumbnail Image.png

Propensity score estimation with random forests

Description

Random Forests is a statistical learning method which has been proposed for propensity score estimation models that involve complex interactions, nonlinear relationships, or both of the covariates. In this dissertation I conducted a simulation study to examine the effects of

Random Forests is a statistical learning method which has been proposed for propensity score estimation models that involve complex interactions, nonlinear relationships, or both of the covariates. In this dissertation I conducted a simulation study to examine the effects of three Random Forests model specifications in propensity score analysis. The results suggested that, depending on the nature of data, optimal specification of (1) decision rules to select the covariate and its split value in a Classification Tree, (2) the number of covariates randomly sampled for selection, and (3) methods of estimating Random Forests propensity scores could potentially produce an unbiased average treatment effect estimate after propensity scores weighting by the odds adjustment. Compared to the logistic regression estimation model using the true propensity score model, Random Forests had an additional advantage in producing unbiased estimated standard error and correct statistical inference of the average treatment effect. The relationship between the balance on the covariates' means and the bias of average treatment effect estimate was examined both within and between conditions of the simulation. Within conditions, across repeated samples there was no noticeable correlation between the covariates' mean differences and the magnitude of bias of average treatment effect estimate for the covariates that were imbalanced before adjustment. Between conditions, small mean differences of covariates after propensity score adjustment were not sensitive enough to identify the optimal Random Forests model specification for propensity score analysis.

Contributors

Agent

Created

Date Created
2013

151975-Thumbnail Image.png

The structure of cyber and traditional aggression: an integrated conceptualization

Description

ABSTRACT The phenomenon of cyberbullying has captured the attention of educators and researchers alike as it has been associated with multiple aversive outcomes including suicide. Young people today have easy access to computer mediated communication (CMC) and frequently use it

ABSTRACT The phenomenon of cyberbullying has captured the attention of educators and researchers alike as it has been associated with multiple aversive outcomes including suicide. Young people today have easy access to computer mediated communication (CMC) and frequently use it to harass one another -- a practice that many researchers have equated to cyberbullying. However, there is great disagreement among researchers whether intentional harmful actions carried out by way of CMC constitute cyberbullying, and some authors have argued that "cyber-aggression" is a more accurate term to describe this phenomenon. Disagreement in terms of cyberbullying's definition and methodological inconsistencies including choice of questionnaire items has resulted in highly variable results across cyberbullying studies. Researchers are in agreement however, that cyber and traditional forms of aggression are closely related phenomena, and have suggested that they may be extensions of one another. This research developed a comprehensive set of items to span cyber-aggression's content domain in order to 1) fully address all types of cyber-aggression, and 2) assess the interrelated nature of cyber and traditional aggression. These items were administered to 553 middle school students located in a central Illinois school district. Results from confirmatory factor analyses suggested that cyber-aggression is best conceptualized as integrated with traditional aggression, and that cyber and traditional aggression share two dimensions: direct-verbal and relational aggression. Additionally, results indicated that all forms of aggression are a function of general aggressive tendencies. This research identified two synthesized models combining cyber and traditional aggression into a shared framework that demonstrated excellent fit to the item data.

Contributors

Agent

Created

Date Created
2013

151192-Thumbnail Image.png

Developing a measure of cyberbullying perpetration and victimization

Description

This research addressed concerns regarding the measurement of cyberbullying and aimed to develop a reliable and valid measure of cyberbullying perpetration and victimization. Despite the growing body of literature on cyberbullying, several measurement concerns were identified and addressed in two

This research addressed concerns regarding the measurement of cyberbullying and aimed to develop a reliable and valid measure of cyberbullying perpetration and victimization. Despite the growing body of literature on cyberbullying, several measurement concerns were identified and addressed in two pilot studies. These concerns included the most appropriate time frame for behavioral recall, use of the term "cyberbullying" in questionnaire instructions, whether to refer to power in instances of cyberbullying, and best practices for designing self-report measures to reflect how young adults understand and communicate about cyberbullying. Mixed methodology was employed in two pilot studies to address these concerns and to determine how to best design a measure which participants could respond to accurately and honestly. Pilot study one consisted of an experimental examination of time frame for recall and use of the term on the outcomes of honesty, accuracy, and social desirability. Pilot study two involved a qualitative examination of several measurement concerns through focus groups held with young adults. Results suggested that one academic year was the most appropriate time frame for behavioral recall, to avoid use of the term "cyberbullying" in questionnaire instructions, to include references to power, and other suggestions for the improving the method in the main study to bolster participants' attention. These findings informed the development of a final measure in the main study which aimed to be both practical in its ability to capture prevalence and precise in its ability to measure frequency. The main study involved examining the psychometric properties, reliability, and validity of the final measure. Results of the main study indicated that the final measure exhibited qualities of an index and was assessed as such. Further, structural equation modeling techniques and test-retest procedures indicated the measure had good reliability. And, good predictive validity and satisfactory convergent validity was established for the final measure. Results derived from the measure concerning prevalence, frequency, and chronicity are presented within the scope of findings in cyberbullying literature. Implications for practice and future directions for research with the measure developed here are discussed.

Contributors

Agent

Created

Date Created
2012

151761-Thumbnail Image.png

The accuracy of accuracy estimates for single form dichotomous classification exams

Description

The use of exams for classification purposes has become prevalent across many fields including professional assessment for employment screening and standards based testing in educational settings. Classification exams assign individuals to performance groups based on the comparison of their observed

The use of exams for classification purposes has become prevalent across many fields including professional assessment for employment screening and standards based testing in educational settings. Classification exams assign individuals to performance groups based on the comparison of their observed test scores to a pre-selected criterion (e.g. masters vs. nonmasters in dichotomous classification scenarios). The successful use of exams for classification purposes assumes at least minimal levels of accuracy of these classifications. Classification accuracy is an index that reflects the rate of correct classification of individuals into the same category which contains their true ability score. Traditional methods estimate classification accuracy via methods which assume that true scores follow a four-parameter beta-binomial distribution. Recent research suggests that Item Response Theory may be a preferable alternative framework for estimating examinees' true scores and may return more accurate classifications based on these scores. Researchers hypothesized that test length, the location of the cut score, the distribution of items, and the distribution of examinee ability would impact the recovery of accurate estimates of classification accuracy. The current simulation study manipulated these factors to assess their potential influence on classification accuracy. Observed classification as masters vs. nonmasters, true classification accuracy, estimated classification accuracy, BIAS, and RMSE were analyzed. In addition, Analysis of Variance tests were conducted to determine whether an interrelationship existed between levels of the four manipulated factors. Results showed small values of estimated classification accuracy and increased BIAS in accuracy estimates with few items, mismatched distributions of item difficulty and examinee ability, and extreme cut scores. A significant four-way interaction between manipulated variables was observed. In additional to interpretations of these findings and explanation of potential causes for the recovered values, recommendations that inform practice and avenues of future research are provided.

Contributors

Agent

Created

Date Created
2013

151501-Thumbnail Image.png

Daily diary data: effects of cycles on inferences

Description

Daily dairies and other intensive measurement methods are increasingly used to study the relationships between two time varying variables X and Y. These data are commonly analyzed using longitudinal multilevel or bivariate growth curve models that allow for random effects

Daily dairies and other intensive measurement methods are increasingly used to study the relationships between two time varying variables X and Y. These data are commonly analyzed using longitudinal multilevel or bivariate growth curve models that allow for random effects of intercept (and sometimes also slope) but which do not address the effects of weekly cycles in the data. Three Monte Carlo studies investigated the impact of omitting the weekly cycles in daily dairy data under the multilevel model framework. In cases where cycles existed in both the time-varying predictor series (X) and the time-varying outcome series (Y) but were ignored, the effects of the within- and between-person components of X on Y tended to be biased, as were their corresponding standard errors. The direction and magnitude of the bias depended on the phase difference between the cycles in the two series. In cases where cycles existed in only one series but were ignored, the standard errors of the regression coefficients for the within- and between-person components of X tended to be biased, and the direction and magnitude of bias depended on which series contained cyclical components.

Contributors

Agent

Created

Date Created
2013

152026-Thumbnail Image.png

When resilience rides the cycle of fatigue: the role of interpersonal enjoyment on daily fatigue in women with fibromyalgia

Description

Fibromyalgia (FM) is a chronic pain condition characterized by debilitating fatigue. This study examined the dynamic relation between interpersonal enjoyment and fatigue in 102 partnered and 74 unpartnered women with FM. Participants provided three daily ratings for 21 days. They

Fibromyalgia (FM) is a chronic pain condition characterized by debilitating fatigue. This study examined the dynamic relation between interpersonal enjoyment and fatigue in 102 partnered and 74 unpartnered women with FM. Participants provided three daily ratings for 21 days. They rated their fatigue in late morning and at the end of the day. Both partnered and unpartnered participants reported their interpersonal enjoyment in the combined familial, friendship, and work domains (COMBINED domain) in the afternoon. Additionally, partnered participants reported their interpersonal enjoyment in the spousal domain. The study was guided by three hypotheses at the within-person level, based on daily diaries: (1) elevated late morning fatigue would predict diminished afternoon interpersonal enjoyment; (2) diminished interpersonal enjoyment would predict elevated end-of-day fatigue; (3) interpersonal enjoyment would mediate the late morning to end-of-day fatigue relationship. In cross-level models, the study explored whether individual differences (between-person) in late morning fatigue and afternoon interpersonal enjoyment would moderate within-person relations from late morning fatigue to afternoon interpersonal enjoyment, and from afternoon interpersonal enjoyment to end-of-day fatigue. Furthermore, it explored whether the hypothesized relationships at the within-person level would also emerge at the between-person level (between-person mediation models). Multilevel structural equation modeling and multilevel modeling were employed for model testing, separately for partnered and unpartnered participants. Within-person mediation models supported that on high fatigue mornings, afternoon interpersonal enjoyment was dampened in the spousal and combined domains in partnered and unpartnered samples. Moreover, low afternoon interpersonal enjoyment in both the spousal and combined domains predicted elevated end-of-day fatigue. Afternoon interpersonal enjoyment mediated the relationship of late morning to end-of-day fatigue in the combined domain but in not the spousal domain. Cross-level moderation analyses showed that individual differences in afternoon spousal enjoyment moderated the day-to-day relation between afternoon spousal enjoyment and end-of-day fatigue. Finally, the mediational chain was not observed at the between-person level. These findings suggest that preserving interpersonal enjoyment in non-spousal relations limits within-day increases in FM fatigue. They highlight the importance of examining domain-specificity in interpersonal enjoyment when studying fatigue, and suggest that targeting enjoyment in social relations may improve the efficacy of existing treatments.

Contributors

Agent

Created

Date Created
2013