Matching Items (2)
Filtering by

Clear all filters

151957-Thumbnail Image.png
Description
Random Forests is a statistical learning method which has been proposed for propensity score estimation models that involve complex interactions, nonlinear relationships, or both of the covariates. In this dissertation I conducted a simulation study to examine the effects of three Random Forests model specifications in propensity score analysis. The

Random Forests is a statistical learning method which has been proposed for propensity score estimation models that involve complex interactions, nonlinear relationships, or both of the covariates. In this dissertation I conducted a simulation study to examine the effects of three Random Forests model specifications in propensity score analysis. The results suggested that, depending on the nature of data, optimal specification of (1) decision rules to select the covariate and its split value in a Classification Tree, (2) the number of covariates randomly sampled for selection, and (3) methods of estimating Random Forests propensity scores could potentially produce an unbiased average treatment effect estimate after propensity scores weighting by the odds adjustment. Compared to the logistic regression estimation model using the true propensity score model, Random Forests had an additional advantage in producing unbiased estimated standard error and correct statistical inference of the average treatment effect. The relationship between the balance on the covariates' means and the bias of average treatment effect estimate was examined both within and between conditions of the simulation. Within conditions, across repeated samples there was no noticeable correlation between the covariates' mean differences and the magnitude of bias of average treatment effect estimate for the covariates that were imbalanced before adjustment. Between conditions, small mean differences of covariates after propensity score adjustment were not sensitive enough to identify the optimal Random Forests model specification for propensity score analysis.
ContributorsCham, Hei Ning (Author) / Tein, Jenn-Yun (Thesis advisor) / Enders, Stephen G (Thesis advisor) / Enders, Craig K. (Committee member) / Mackinnon, David P (Committee member) / Arizona State University (Publisher)
Created2013
149323-Thumbnail Image.png
Description
In the past, it has been assumed that measurement and predictive invariance are consistent so that if one form of invariance holds the other form should also hold. However, some studies have proven that both forms of invariance only hold under certain conditions such as factorial invariance and invariance in

In the past, it has been assumed that measurement and predictive invariance are consistent so that if one form of invariance holds the other form should also hold. However, some studies have proven that both forms of invariance only hold under certain conditions such as factorial invariance and invariance in the common factor variances. The present research examined Type I errors and the statistical power of a method that detects violations to the factorial invariant model in the presence of group differences in regression intercepts, under different sample sizes and different number of predictors (one or two). Data were simulated under two models: in model A only differences in the factor means were allowed, while model B violated invariance. A factorial invariant model was fitted to the data. Type I errors were defined as the proportion of samples in which the hypothesis of invariance was incorrectly rejected, and statistical power was defined as the proportion of samples in which the hypothesis of factorial invariance was correctly rejected. In the case of one predictor, the results show that the chi-square statistic has low power to detect violations to the model. Unexpected and systematic results were obtained regarding the negative unique variance in the predictor. It is proposed that negative unique variance in the predictor can be used as indication of measurement bias instead of the chi-square fit statistic with sample sizes of 500 or more. The results of the two predictor case show larger power. In both cases Type I errors were as expected. The implications of the results and some suggestions for increasing the power of the method are provided.
ContributorsAguilar, Margarita Olivera (Author) / Millsap, Roger E. (Thesis advisor) / Aiken, Leona S. (Committee member) / Enders, Craig K. (Committee member) / Arizona State University (Publisher)
Created2010