Matching Items (19)
156035-Thumbnail Image.png
Description
The construction industry is performing poorly regarding project management and service delivery. On average, global projects are over-budget, delayed, and met with unsatisfactory results according to buyers. To mitigate poor performance, the project management career path has been heavily researched and continually developed over the last century. Despite the published

The construction industry is performing poorly regarding project management and service delivery. On average, global projects are over-budget, delayed, and met with unsatisfactory results according to buyers. To mitigate poor performance, the project management career path has been heavily researched and continually developed over the last century. Despite the published advances in project management approaches and tools, project performance continues to suffer. This research seeks to conduct an exploratory analysis of current project management and other approaches and determine how they affect project performance. Through a detailed literature search, the researcher identified a procurement model that is more heavily documented as high performing than all other approaches. The researcher proposed that this model may be a solution to assist project managers with the delivery of high performing services. The model is called the Best Value Approach (BVA). The BVA focuses on leadership, non-technical communication, quality assurance, and transparent project execution. To test the effectiveness of its practices, the researcher modified and adapted the BVA into a project management approach and tested it on a large-scale government project. During the case study test, the researcher observed that there were two primary project management roles in the supply chain; the buyer’s and vendor’s project managers. The case study resulted in the large government organization receiving more work and increased their satisfaction of the work received by 22 percent from the previous year. To further test the project management adapted BVA, the researcher conducted a classroom case-study in which students learned and implemented the BVA practices on real-time, small-scale industry projects. Results include cost savings of $100,000 for 10 companies over 24 projects, cost avoidance of over $4.5M, and a 9.8/10 customer satisfaction [in terms of the companies’ satisfaction with the deliverables produced on each project]. These results suggest that the BVA practices may effectively improve the performance of project delivery, and may be a viable new project management approach to train future project managers. Out of the two project manager roles, it is proposed that the buyer’s project manager may receive the most benefit. Additional research is needed on the other approaches to compare quantitative project performance, and run repeated testing on the potential new project management approach.
ContributorsRivera, Alfredo Octavio (Author) / Badger, William (Thesis advisor) / Sullivan, Kenneth (Thesis advisor) / Kashiwagi, Jacob S (Committee member) / Arizona State University (Publisher)
Created2017
155493-Thumbnail Image.png
Description
This thesis presents a literature research analyzing the cost overrun of the construction industry worldwide, exploring documented causes for cost overrun, and documented parties responsible for the inefficiency. The analysis looks at a comparison between the metrics of construction projects in different continents and regions. Multiple publication databases were used

This thesis presents a literature research analyzing the cost overrun of the construction industry worldwide, exploring documented causes for cost overrun, and documented parties responsible for the inefficiency. The analysis looks at a comparison between the metrics of construction projects in different continents and regions. Multiple publication databases were used to look into over 300 papers. It is shown that although construction demands are increasing, cost overrun on these projects is not decreasing at the same rate around the world. This thesis also presents a possible solution to improve cost overrun in the construction industry, through the use of the Best Value Performance Information Procurement System (BV PIPS). This is a system that has been utilized in various countries around the world, and has documented evidence that it may be able to alleviate the overrun occurring in the construction industry.
ContributorsGoyal, Abhinav (Author) / Kashiwagi, Jacob (Thesis advisor) / Kashiwagi, Dean (Committee member) / Chong, Oswald (Committee member) / Arizona State University (Publisher)
Created2017
149457-Thumbnail Image.png
Description
Front End Planning (FEP) is a critical process for uncovering project unknowns, while developing adequate scope definition following a structured approach for the project execution process. FEP for infrastructure projects assists in identifying and mitigating issues such as right-of-way concerns, utility adjustments, environmental hazards, logistic problems, and permitting requirements. This

Front End Planning (FEP) is a critical process for uncovering project unknowns, while developing adequate scope definition following a structured approach for the project execution process. FEP for infrastructure projects assists in identifying and mitigating issues such as right-of-way concerns, utility adjustments, environmental hazards, logistic problems, and permitting requirements. This thesis describes a novel and effective risk management tool that has been developed by the Construction Industry Institute (CII) called the Project Definition Rating Index (PDRI) for infrastructure projects. Input from industry professionals from over 30 companies was used in the tool development which is specifically focused on FEP. Data from actual projects are given showing the efficacy of the tool. Critical success factors for FEP of infrastructure projects are shared. The research shows that a finite and specific list of issues related to scope definition of infrastructure projects can be developed. The thesis also concludes that the PDRI score indicates the current level of scope definition and corresponds to project performance. Infrastructure projects with low PDRI scores outperform projects with high PDRI scores.
ContributorsBingham, Evan Dale (Author) / Gibson Jr., G. Edward (Thesis advisor) / Badger, William (Committee member) / Ariaratnam, Samuel (Committee member) / Arizona State University (Publisher)
Created2010
149322-Thumbnail Image.png
Description
The U.S. Army Medical Command has been testing a leadership based structure to increase the performance of delivering construction and facility services in its system of $600M of construction and 26 major hospital facilities in the U.S. The organizational requirement was to minimize the management and oversight of contractors

The U.S. Army Medical Command has been testing a leadership based structure to increase the performance of delivering construction and facility services in its system of $600M of construction and 26 major hospital facilities in the U.S. The organizational requirement was to minimize the management and oversight of contractors and simultaneously increase project performance. The research proposes that a leadership based structure can supplement the perception, preplanning, and risk minimization capability of a contractor's project manager, thus increasing the project performance (on time, within budget, and meeting expectations) and decreasing client management requirement. The projects were delivered in a best value and low price environment. The major impact of this research was that proactive management by contractors was more effective than traditional management such as direction, control, and inspection by client's professional representatives. The results based on data collection and date analyses validated that a leadership based structure can increase the performance of an organization and reduce its management requirement.
ContributorsMalhotra, Neha (Author) / Kashiwagi, Dean T. (Thesis advisor) / Sullivan, Kenneth (Committee member) / Badger, William (Committee member) / Arizona State University (Publisher)
Created2010
154362-Thumbnail Image.png
Description
The semiconductor manufacturing business model provides unique challenges for the design and construction of supporting fabrication facilities. To accommodate the latest semiconductor processes and technologies, manufacturing facilities are constantly re-tooled and upgraded. Common to this sector of construction is the retrofit project environment. This type of construction project introduces a multitude of existing conditions

The semiconductor manufacturing business model provides unique challenges for the design and construction of supporting fabrication facilities. To accommodate the latest semiconductor processes and technologies, manufacturing facilities are constantly re-tooled and upgraded. Common to this sector of construction is the retrofit project environment. This type of construction project introduces a multitude of existing conditions constraints and functions entirely differently than traditional new-build projects. This facility conversion process is further constrained by owner needs for continuous manufacturing operations and a compressed design/construction schedule to meet first-to-market milestones.

To better control the variables within this project environment, Building Information Modeling (BIM) workflows are being explored and introduced into this project typology. The construction supply-chain has also increased their focus on offsite construction techniques to prefabricate components in a controlled environment. The goal is to overlap construction timelines and improve the productivity of workers to meet the increasingly demanding schedules and to reduce on-site congestion. Limited studies exist with regards to the manufacturing retrofit construction environment, particularly when focusing on the effectiveness of BIM and prefabrication workflows. This study fills the gap by studying labor time utilization rates for Building Information Modeling workflows for prefabrication of MEP (mechanical/electrical/plumbing) and process piping equipment in a retrofit construction environment.

A semiconductor manufacturing facility serves as a case-study for this research in which the current state process for utilizing BIM for prefabrication is mapped and analyzed. Labor time utilization is studied through direct observation in relation to the current state modeling process. Qualitative analysis of workflows and quantitative analysis of labor time utilization rates provide workflow interventions which are implemented and compared against the current state modeling process.

This research utilizes a mixed-method approach to explore the hypothesis that reliable/trusted geometry is the most important component for successful implementation of a BIM for prefabrication workflow in a retrofit environment. The end product of this research is the development of a prefaBIM framework for the introduction of a dynamic modeling process for retrofit prefabrication which forms the basis for a model-based delivery system for retrofit prefabrication.
ContributorsCribbs, John (Author) / Chasey, Allan (Thesis advisor) / Ayer, Steven K. (Committee member) / Giel, Brittany (Committee member) / Arizona State University (Publisher)
Created2016
154239-Thumbnail Image.png
Description
Much of the water and wastewater lines in the United States are nearing the end of their useful life. A significant reinvestment is needed in the upcoming decades to replace or rehabilitate the water and wastewater infrastructure. Currently, the traditional method for delivering water and wastewater pipeline engineering and construction

Much of the water and wastewater lines in the United States are nearing the end of their useful life. A significant reinvestment is needed in the upcoming decades to replace or rehabilitate the water and wastewater infrastructure. Currently, the traditional method for delivering water and wastewater pipeline engineering and construction projects is design-bid-build (DBB). The traditional DBB delivery system is a sequential low-integration process and can lead to inefficiencies and adverse relationships between stakeholders. Alternative project delivery methods (APDM) such as Construction Manager at Risk (CMAR) have been introduced to increase stakeholder integration and ultimately enhance project performance. CMAR project performance impacts have been studied in the horizontal and vertical construction industries. However, the performance of CMAR projects in the pipeline engineering and construction industry has not been quantitatively studied.

The dissertation fills this gap in knowledge by performing the first quantitative analysis of CMAR performance on pipeline engineering and construction projects. This study’s two research objectives are:

(1) Develop a CMAR baseline of commonly measured project performance metrics

(2) Statistically compare the cost and schedule performance of CMAR to that of the traditional DBB delivery method

A thorough literature review led to the development of a data collection survey used in conjunction with structured interviews to gather qualitative and quantitative performance data from 66 completed water and wastewater pipeline projects. Performance data analysis was conducted to provide performance benchmarks for CMAR projects and to compare the performance of CMAR and DBB.

This study provides the first CMAR performance benchmark for pipeline engineering and construction projects. The results span across seven metrics in four performance areas (cost, schedule, project change, and communication). Pipeline projects delivered using CMAR have a median cost and schedule growth of -5% and 5.10%, respectively. These results are significantly improved from DBB baseline performance shown in other industries. To verify this, a statistical analysis was done to compare the cost and schedule performance of CMAR to similar DBB pipeline projects. The results show that CMAR pipeline projects are being delivered with 6.5% less cost growth and with 12.5% less schedule growth than similar DBB projects, providing owners with increased certainty when delivering their pipeline projects.
ContributorsFrancom, Tober C (Author) / Ariaratnam, Samuel (Thesis advisor) / El Asmar, Mounir (Thesis advisor) / Bearup, Wylie (Committee member) / Arizona State University (Publisher)
Created2015
153880-Thumbnail Image.png
Description
Project teams expend substantial effort to develop scope definition during the front end planning phase of large, complex projects, but oftentimes neglect to sufficiently plan for small projects. An industry survey administered by the author showed that small projects make up 70-90 percent (by count) of all projects in the

Project teams expend substantial effort to develop scope definition during the front end planning phase of large, complex projects, but oftentimes neglect to sufficiently plan for small projects. An industry survey administered by the author showed that small projects make up 70-90 percent (by count) of all projects in the industrial construction sector, the planning of these project varies greatly, and that a consistent definition of “small industrial project” did not exist. This dissertation summarizes the motivations and efforts to develop a non-proprietary front end planning tool specifically for small industrial projects, namely the Project Definition Rating Index (PDRI) for Small Industrial Projects. The author was a member of Construction Industry Institute (CII) Research Team 314, who was tasked with developing the tool in May of 2013. The author, together with the research team, reviewed, scrutinized and adapted an existing industrial-focused FEP tool, the PDRI for Industrial Projects, and other resources to develop a set of 41 specific elements relevant to the planning of small industrial projects. The author supported the facilitation of five separate industry workshops where 65 industry professionals evaluated the element descriptions, and provided element prioritization data that was statistically analyzed and used to develop a weighted score sheet that corresponds to the element descriptions. The tool was tested on 54 completed and in-progress projects, the author’s analysis of which showed that small industrial projects with greater scope definition (based on the tool’s scoring scheme) outperformed projects with lesser scope definition regarding cost performance, schedule performance, change performance, financial performance, and customer satisfaction. Moreover, the author found that users of the tool on in-progress projects overwhelmingly agreed that the tool added value to their projects in a timeframe and manner consistent with their needs, and that they would continue using the tool in the future. The author also developed an index-based selection guide to aid PDRI users in choosing the appropriate tool for use on an industrial project based on distinguishing project size with indicators of project complexity. The final results of the author’s research provide several contributions to the front end planning, small projects, and project complexity bodies of knowledge.
ContributorsCollins, Wesley A (Author) / Parrish, Kristen (Thesis advisor) / Gibson, Jr., G. Edward (Committee member) / El Asmar, Mounir (Committee member) / Arizona State University (Publisher)
Created2015
153973-Thumbnail Image.png
Description
The workforce demographics are changing as a large portion of the population is approaching retirement and thus leaving vacancies in the construction industry. Succession planning is an aspect of talent management which aims to mitigate instability faced by a company when a new successor fills a vacancy. Research shows that

The workforce demographics are changing as a large portion of the population is approaching retirement and thus leaving vacancies in the construction industry. Succession planning is an aspect of talent management which aims to mitigate instability faced by a company when a new successor fills a vacancy. Research shows that in addition to a diminishing pool of available talent, the industry does not have widespread, empirically tested and implemented models that lead to effective successions. The objective of this research was to create a baseline profile for succession planning in the construction industry by identifying currently implemented best practices. The author interviewed six companies of varying sizes and demographics within the construction industry and compared their succession planning methodologies to identify any common challenges and practices. Little consensus between the companies was found. The results of the interviews were then compared to current research literature, but even here, little consensus was found. In addition, companies lacked quantitative performance metrics demonstrating the effectiveness, or ineffectiveness, of their current succession planning methodologies. The authors recommended that additional research is carried out to focus on empirical evidence and measurement of industry practices surrounding talent identification, development, and transition leading to succession.
ContributorsGunnoe, Jake A (Author) / Sullivan, Kenneth (Thesis advisor) / Wiezel, Avi (Committee member) / Kashiwagi, Dean (Committee member) / Arizona State University (Publisher)
Created2015
153203-Thumbnail Image.png
Description
Construction Management research has not been successful in changing the practices of the construction industry. The method of receiving grants and the peer review paper system that academics rely on to achieve promotion, does not align to academic researchers becoming experts who can bring change to industry practices. Poor construction

Construction Management research has not been successful in changing the practices of the construction industry. The method of receiving grants and the peer review paper system that academics rely on to achieve promotion, does not align to academic researchers becoming experts who can bring change to industry practices. Poor construction industry performance has been documented for the past 25 years in the international construction management field. However, after 25 years of billions of dollars of research investment, the solution remains elusive. Research has shown that very few researchers have a hypothesis, run cycles of research tests in the industry, and result in changing industry practices.

The most impactful research identified in this thesis, has led to conclusions that pre-planning is critical, hiring contractors who have expertise will result in better performance, and risk is mitigated when the supply chain partners work together and expertise is utilized at the beginning of projects.

The problems with construction non-performance have persisted. Legal contract issues have become more important. Traditional research approaches have not identified the severity and the source of construction non-performance. The problem seems to be as complex as ever. The construction industry practices and the academic research community remain in silos. This research proposes that the problem may be in the traditional construction management research structure and methodology. The research

has identified a unique non-traditional research program that has documented over 1700 industry tests, which has resulted in a decrease in client management by up to 79%, contractors adding value by up to 38%, increased customer satisfaction by up to 140%, reduced change order rates as low as -0.6%, and decreased cost of services by up to 31%.

The purpose of this thesis is to document the performance of the non-traditional research program around the above identified results. The documentation of such an effort will shed more light on what is required for a sustainable, industry impacting, and academic expert based research program.
ContributorsRivera, Alfredo O (Author) / Kashiwagi, Dean T. (Thesis advisor) / Sullivan, Kenneth (Committee member) / Kashiwagi, Jacob S (Committee member) / Arizona State University (Publisher)
Created2014