Matching Items (19)
Filtering by

Clear all filters

151659-Thumbnail Image.png
Description
Utilizing the Arizona State University's Performance Based Studies Research Group, and their PIPS program, a roofing materials manufacturing company can evaluate performance of representatives, products and contractors. Service life of the systems can be tracked and customer satisfaction measured it provides an objective viable tool for the consumer to choose

Utilizing the Arizona State University's Performance Based Studies Research Group, and their PIPS program, a roofing materials manufacturing company can evaluate performance of representatives, products and contractors. Service life of the systems can be tracked and customer satisfaction measured it provides an objective viable tool for the consumer to choose a quality product and contractor without the distractions of marketing, promises, or a salesman's hype. Facilities purchasing a new roof system, can benefit from the information gathered as a guide in making sound, value based decisions. Creating a historical, concise and accurate documentation of roofing systems is a benefit to all involved. The procurement process, installation and longevity of the roofing systems can be tracked and graded.
ContributorsGreenfeld, Larry (Author) / Kashiwagi, Dean T. (Thesis advisor) / Sullivan, Kenneth T. (Committee member) / Badger, William W. (Committee member) / Arizona State University (Publisher)
Created2013
152854-Thumbnail Image.png
Description
The construction industry has accepted the uncertainty that is included with every project that is initiated. Because of the existing uncertainty, best practices with risk management are commonly recommended and educated to industry participants. However, the current status of the construction industry's ability to manage risk was found to be

The construction industry has accepted the uncertainty that is included with every project that is initiated. Because of the existing uncertainty, best practices with risk management are commonly recommended and educated to industry participants. However, the current status of the construction industry's ability to manage risk was found to be limited, unstructured, and inadequate. Furthermore, many barriers block organizations from implementing and improving risk management practices. A significant barrier with improving risk management methods is the lack of evidence that clearly demonstrates the need to improve risk management practices. Logical explanations of the benefits of risk management doesn't provide the necessary justification or motivation needed for many organizations to dedicate resources towards improving risk management.

Nevertheless, some organizations understand the importance of risk management practices and have begun to measure their risk maturity in order to identify weaknesses and improve risk management practices. Risk maturity measures the organization's ability and perceptions towards risk management. It is possible that many of the barriers to improving risk management would not exist if increased risk maturity was found to have a positive correlation with successful project performance.

The comprehensive hypothesis of the research is that increased risk maturity improves project performance. An exploratory study was conducted on data collected to identify measurable benefits with risk management. Quantitative and qualitative data was collected on 266 construction projects over a seven year period. Multiple statistical analyses were performed on the data and found a positive correlations between risk maturity and project performance. A positive correlations was found between customer satisfaction and contractors risk maturity. Additional findings from the recorded data included the increased ability to predict risks during construction projects within an organization. These findings provide clear reasoning for organizations to devote additional resources in which improve their risk management practices.
ContributorsPerrenoud, Anthony (Author) / Sullivan, Kenneth T. (Thesis advisor) / Weizel, Avi (Committee member) / Badger, William (Committee member) / Arizona State University (Publisher)
Created2014
152888-Thumbnail Image.png
Description
Owner organizations in the architecture, engineering, and construction (AEC) industry are presented with a wide variety of project delivery approaches. Implementation of these approaches, while enticing due to their potential to save money, reduce schedule delays, or improve quality, is extremely difficult to accomplish and requires a concerted change management

Owner organizations in the architecture, engineering, and construction (AEC) industry are presented with a wide variety of project delivery approaches. Implementation of these approaches, while enticing due to their potential to save money, reduce schedule delays, or improve quality, is extremely difficult to accomplish and requires a concerted change management effort. Research in the field of organizational behavior cautions that perhaps more than half of all organizational change efforts fail to accomplish their intended objectives. This study utilizes an action research approach to analyze change message delivery within owner organizations, model owner project team readiness and adoption of change, and identify the most frequently encountered types of resistance from lead project members. The analysis methodology included Spearman's rank order correlation, variable selection testing via three methods of hierarchical linear regression, relative weight analysis, and one-way ANOVA. Key findings from this study include recommendations for communicating the change message within owner organizations, empirical validation of critical predictors for change readiness and change adoption among project teams, and identification of the most frequently encountered resistive behaviors within change implementation in the AEC industry. A key contribution of this research is the recommendation of change management strategies for use by change practitioners.
ContributorsLines, Brian (Author) / Sullivan, Kenneth (Thesis advisor) / Wiezel, Avi (Committee member) / Badger, William (Committee member) / Arizona State University (Publisher)
Created2014
153400-Thumbnail Image.png
Description
Economic and environmental concerns necessitate the preference for retrofits over new construction in manufacturing facilities for incorporating modern technology, expanding production, becoming more energy-efficient and improving operational efficiency. Despite the technical and functional challenges in retrofits, the expectation from the project team is to; reduce costs, ensure the time to

Economic and environmental concerns necessitate the preference for retrofits over new construction in manufacturing facilities for incorporating modern technology, expanding production, becoming more energy-efficient and improving operational efficiency. Despite the technical and functional challenges in retrofits, the expectation from the project team is to; reduce costs, ensure the time to market and maintain a high standard for quality and safety. Thus, the construction supply chain faces increasing pressure to improve performance by ensuring better labor productivity, among other factors, for efficiency gain. Building Information Modeling (BIM) & off-site prefabrication are determined as effective management & production methods to meet these goals. However, there are limited studies assessing their impact on labor productivity within the constraints of a retrofit environment. This study fills the gap by exploring the impact of BIM on labor productivity (metric) in retrofits (context).

BIM use for process tool installation at a semiconductor manufacturing facility serves as an ideal environment for practical observations. Direct site observations indicate a positive correlation between disruptions in the workflow attributed to an immature use of BIM, waste due to rework and high non-value added time at the labor work face. Root-cause analysis traces the origins of the said disruptions to decision-factors that are critical for the planning, management and implementation of BIM. Analysis shows that stakeholders involved in decision-making during BIM planning, management and implementation identify BIM-value based on their immediate utility for BIM-use instead of the utility for the customers of the process. This differing value-system manifests in the form of unreliable and inaccurate information at the labor work face.

Grounding the analysis in theory and observations, the author hypothesizes that stakeholders of a construction project value BIM and BIM-aspects (i.e. geometrical information, descriptive information and workflows) differently and the accuracy of geometrical information is critical for improving labor productivity when using prefabrication in retrofit construction. In conclusion, this research presents a BIM-value framework, associating stakeholders with their relative value for BIM, the decision-factors for the planning, management and implementation of BIM and the potential impact of those decisions on labor productivity.
ContributorsGhosh, Arundhati (Author) / Chasey, Allan D (Thesis advisor) / Laroche, Dominique-Claude (Committee member) / Fowler, John (Committee member) / Arizona State University (Publisher)
Created2015
153164-Thumbnail Image.png
Description
Alternative Project Delivery Methods (APDMs), namely Design Build (DB) and Construction Manager at Risk (CMAR), grew out of the need to find a more efficient project delivery approach than the traditional Design Bid Build (DBB) form of delivery. After decades of extensive APDM use, there have been many studies focused

Alternative Project Delivery Methods (APDMs), namely Design Build (DB) and Construction Manager at Risk (CMAR), grew out of the need to find a more efficient project delivery approach than the traditional Design Bid Build (DBB) form of delivery. After decades of extensive APDM use, there have been many studies focused on the use of APDMs and project outcomes. Few of these studies have reached a level of statistical significance to make conclusive observations about APDMs. This research effort completes a comprehensive study for use in the horizontal transportation construction market, providing a better basis for decisions on project delivery method selection, improving understanding of best practices for APDM use, and reporting outcomes from the largest collection of APDM project data to date. The study is the result of an online survey of project owners and design teams from 17 states representing 83 projects nationally. Project data collected represents almost six billion US dollars. The study performs an analysis of the transportation APDM market and answers questions dealing with national APDM usage, motivators for APDM selection, the relation of APDM to pre-construction services, and the use of industry best practices. Top motivators for delivery method selection: the project schedule or the urgency of the project, the ability to predict and control cost, and finding the best method to allocate risk, as well as other factors were identified and analyzed. Analysis of project data was used to compare to commonly held assumptions about the project delivery methods, confirming some assumptions and refuting others. Project data showed that APDM projects had the lowest overall cost growth. DB projects had higher schedule growth. CMAR projects had low design schedule growth but high construction schedule growth. DBB showed very little schedule growth and the highest cost growth of the delivery methods studied. Best practices in project delivery were studied: team alignment, front end planning, and risk assessment were identified as practices most critical to project success. The study contributes and improves on existing research on APDM project selection and outcomes and fills many of the gaps in research identified by previous research efforts and industry leaders.
ContributorsBingham, Evan Dale (Author) / Gibson Jr., G. Edward (Thesis advisor) / El Asmar, Mounir (Thesis advisor) / Bearup, Wylie (Committee member) / Arizona State University (Publisher)
Created2014
153252-Thumbnail Image.png
Description
Effective collection and dissemination of project information, including best practices, help increase the likelihood of project performance and are vital to organizations in the architecture-engineering-construction (AEC) industry. Best practices can help improve project performance, yet these practices are not universally implemented and used in the industry, due to the following:

Effective collection and dissemination of project information, including best practices, help increase the likelihood of project performance and are vital to organizations in the architecture-engineering-construction (AEC) industry. Best practices can help improve project performance, yet these practices are not universally implemented and used in the industry, due to the following: 1) not all practices are applicable to every project or organization, 2) knowledge lost in organizational turnover which leads to inconsistent collection and implementation of best practices and 3) the lack of standardized processes for best practice management in an organization.

This research, sponsored by National Academy of Construction, the Construction Industry Institute and Arizona State University, used structured interviews, a Delphi study and focus groups to explore: 1) potential benefit and industry interest in an open repository of best practices and 2) important elements of a framework/model that guides the creation, management and sustainment of an open repository of best practices.

This dissertation presents findings specifically exploring the term "Practices for Excellence", its definition, elements that hinder implementation, the potential value of an open online repository for such practices and a model to develop an open repository.
ContributorsBosfield, Roberta Patrice (Author) / Gibson, Edd (Thesis advisor) / Chester, Mikhail (Committee member) / Parrish, Kristen (Committee member) / Sullivan, Kenneth (Committee member) / Arizona State University (Publisher)
Created2014
150085-Thumbnail Image.png
Description
The wood-framing trade has not sufficiently been investigated to understand the work task sequencing and coordination among crew members. A new mental framework for a performing crew was developed and tested through four case studies. This framework ensured similar team performance as the one provided by task micro-scheduling in planning

The wood-framing trade has not sufficiently been investigated to understand the work task sequencing and coordination among crew members. A new mental framework for a performing crew was developed and tested through four case studies. This framework ensured similar team performance as the one provided by task micro-scheduling in planning software. It also allowed evaluation of the effect of individual coordination within the crew on the crew's productivity. Using design information, a list of micro-activities/tasks and their predecessors was automatically generated for each piece of lumber in the four wood frames. The task precedence was generated by applying elementary geometrical and technological reasoning to each frame. Then, the duration of each task was determined based on observations from videotaped activities. Primavera's (P6) resource leveling rules were used to calculate the sequencing of tasks and the minimum duration of the whole activity for various crew sizes. The results showed quick convergence towards the minimum production time and allowed to use information from Building Information Models (BIM) to automatically establish the optimal crew sizes for frames. Late Start (LS) leveling priority rule gave the shortest duration in every case. However, the logic of LS tasks rule is too complex to be conveyed to the framing crew. Therefore, the new mental framework of a well performing framer was developed and tested to ensure high coordination. This mental framework, based on five simple rules, can be easily taught to the crew and ensures a crew productivity congruent with the one provided by the LS logic. The case studies indicate that once the worst framer in the crew surpasses the limit of 11% deviation from applying the said five rules, every additional percent of deviation reduces the productivity of the whole crew by about 4%.
ContributorsMaghiar, Marcel M (Author) / Wiezel, Avi (Thesis advisor) / Mitropoulos, Panagiotis (Committee member) / Cooke, Nancy J. (Committee member) / Arizona State University (Publisher)
Created2011
150955-Thumbnail Image.png
Description
Front end planning (FEP) is an essential and valuable process that helps identify risks early in the capital project planning phases. With effective FEP, risks can potentially be mitigated through development of detailed scope definition and subsequent efficient project resource use. The thesis describes the FEP process that has been

Front end planning (FEP) is an essential and valuable process that helps identify risks early in the capital project planning phases. With effective FEP, risks can potentially be mitigated through development of detailed scope definition and subsequent efficient project resource use. The thesis describes the FEP process that has been developed over the past twenty years by the Construction Industry Institute (CII). Specifically, it details the FEP tools developed for early project planning and the data gathered to analyze the tools used within the CII community. Data from a March 2011 survey are given showing the tools commonly used, how those tools are used and the common barriers faced that prohibit successful FEP implementation. The findings from in-depth interviews are also shared in the thesis. The interviews were used to gather detail responses from organizations on the implementation of their FEP processes. In total, out of the 116 CII organizations, 59 completed the survey and over 75 percent of the respondents used at least one CII tool in their front end planning processes. Of the 59 survey respondents, 12 organizations participated in the in-depth interviews. The thesis concludes that CII organizations continue to find value in CII FEP tools due to the increase tool usage. Also the thesis concludes that organizations must have strong management commitment, smart succession planning and a standardized planning process to increase the likelihood of successful FEP strategies.
ContributorsBosfield, Roberta Patrice (Author) / Gibson, G.Edward (Thesis advisor) / Wiezel, Avi (Committee member) / Ernzen, James (Committee member) / Arizona State University (Publisher)
Created2012
151243-Thumbnail Image.png
Description
The construction industry faces important performance problems such as low productivity, poor quality of work, and work-related accidents and injuries. Creating a high reliability work system that is simultaneously highly productive and exceptionally safe has become a challenge for construction practitioners and scholars. The main goal of this dissertation was

The construction industry faces important performance problems such as low productivity, poor quality of work, and work-related accidents and injuries. Creating a high reliability work system that is simultaneously highly productive and exceptionally safe has become a challenge for construction practitioners and scholars. The main goal of this dissertation was to create an understanding of high reliability construction work systems based on lessons from the production practices of high performance work crews. High performance work crews are defined as the work crews that constantly reach and maintain a high level of productivity and exceptional safety record while delivering high quality of work. This study was conceptualized on findings from High Reliability Organizations and with a primary focus on lean construction, human factors, safety, and error management. Toward the research objective, this dissertation answered two major questions. First, it explored the task factors and project attributes that shape and increase workers' task demands and consequently affect workers' safety, production, and quality performance. Second, it explored and investigated the production practices of construction field supervisors (foremen) to understand how successful supervisors regulate task and project demands to create a highly reliable work process. Employing case study methodology, this study explored and analyzed the work practices of six work crews and crew supervisors in different trades including concrete, masonry, and hot asphalt roofing construction. The case studies included one exceptional and one average performing crew from each trade. Four major factors were considered in the selection of exceptional crew supervisors: (1) safety performance, (2) production performance, (3) quality performance, and (4) the level of project difficulty they supervised. The data collection was carried out in three phases including: (1) interview with field supervisors to understand their production practices, (2) survey and interview with workers to understand their perception and to identify the major sources of task demands, and (3) several close field observations. Each trade's specific findings including task demands, project attributes, and production practices used by crew supervisors are presented in a separate chapter. At the end the production practices that converged to create high reliability work systems are summarized and presented in nine major categories.
ContributorsMemarian, Babak (Author) / Bashford, Howard (Thesis advisor) / Boren, Rebecca (Committee member) / Wiezel, Avi (Committee member) / Arizona State University (Publisher)
Created2012
154179-Thumbnail Image.png
Description
In today's era a lot of the construction projects suffer from time delay, cost overrun and quality defect. Incentive provisions are found to be a contracting strategy to address this potential problem. During last decade incentive mechanisms have gained importance, and they are starting to become adopted in the construction

In today's era a lot of the construction projects suffer from time delay, cost overrun and quality defect. Incentive provisions are found to be a contracting strategy to address this potential problem. During last decade incentive mechanisms have gained importance, and they are starting to become adopted in the construction projects. Most of the previous research done in this area was purely qualitative, with a few quantitative studies. This study aims to quantify the performance of incentives in construction by collecting the data from more than 30 projects in United States through a questionnaire survey. First, literature review addresses the previous research work related to incentive types, incentives in construction industry, incentives in other industry and benefits of incentives. Second, the collected data is analyzed with statistical methods to test the significance of observed changes between two data sets i.e. incentive projects and non-incentive projects. Finally, the analysis results provide evidence for the significant impact of having incentives; reduced the cost and schedule growth in construction projects in United States.
ContributorsPaladugu, Bala Sai Krishna (Author) / El Asmar, Mounir (Thesis advisor) / Ernzen, James (Committee member) / Sullivan, Kenneth (Committee member) / Arizona State University (Publisher)
Created2015