Matching Items (7)
Filtering by

Clear all filters

152415-Thumbnail Image.png
Description
We are expecting hundreds of cores per chip in the near future. However, scaling the memory architecture in manycore architectures becomes a major challenge. Cache coherence provides a single image of memory at any time in execution to all the cores, yet coherent cache architectures are believed will not scale

We are expecting hundreds of cores per chip in the near future. However, scaling the memory architecture in manycore architectures becomes a major challenge. Cache coherence provides a single image of memory at any time in execution to all the cores, yet coherent cache architectures are believed will not scale to hundreds and thousands of cores. In addition, caches and coherence logic already take 20-50% of the total power consumption of the processor and 30-60% of die area. Therefore, a more scalable architecture is needed for manycore architectures. Software Managed Manycore (SMM) architectures emerge as a solution. They have scalable memory design in which each core has direct access to only its local scratchpad memory, and any data transfers to/from other memories must be done explicitly in the application using Direct Memory Access (DMA) commands. Lack of automatic memory management in the hardware makes such architectures extremely power-efficient, but they also become difficult to program. If the code/data of the task mapped onto a core cannot fit in the local scratchpad memory, then DMA calls must be added to bring in the code/data before it is required, and it may need to be evicted after its use. However, doing this adds a lot of complexity to the programmer's job. Now programmers must worry about data management, on top of worrying about the functional correctness of the program - which is already quite complex. This dissertation presents a comprehensive compiler and runtime integration to automatically manage the code and data of each task in the limited local memory of the core. We firstly developed a Complete Circular Stack Management. It manages stack frames between the local memory and the main memory, and addresses the stack pointer problem as well. Though it works, we found we could further optimize the management for most cases. Thus a Smart Stack Data Management (SSDM) is provided. In this work, we formulate the stack data management problem and propose a greedy algorithm for the same. Later on, we propose a general cost estimation algorithm, based on which CMSM heuristic for code mapping problem is developed. Finally, heap data is dynamic in nature and therefore it is hard to manage it. We provide two schemes to manage unlimited amount of heap data in constant sized region in the local memory. In addition to those separate schemes for different kinds of data, we also provide a memory partition methodology.
ContributorsBai, Ke (Author) / Shrivastava, Aviral (Thesis advisor) / Chatha, Karamvir (Committee member) / Xue, Guoliang (Committee member) / Chakrabarti, Chaitali (Committee member) / Arizona State University (Publisher)
Created2014
151846-Thumbnail Image.png
Description
Efficiency of components is an ever increasing area of importance to portable applications, where a finite battery means finite operating time. Higher efficiency devices need to be designed that don't compromise on the performance that the consumer has come to expect. Class D amplifiers deliver on the goal of increased

Efficiency of components is an ever increasing area of importance to portable applications, where a finite battery means finite operating time. Higher efficiency devices need to be designed that don't compromise on the performance that the consumer has come to expect. Class D amplifiers deliver on the goal of increased efficiency, but at the cost of distortion. Class AB amplifiers have low efficiency, but high linearity. By modulating the supply voltage of a Class AB amplifier to make a Class H amplifier, the efficiency can increase while still maintaining the Class AB level of linearity. A 92dB Power Supply Rejection Ratio (PSRR) Class AB amplifier and a Class H amplifier were designed in a 0.24um process for portable audio applications. Using a multiphase buck converter increased the efficiency of the Class H amplifier while still maintaining a fast response time to respond to audio frequencies. The Class H amplifier had an efficiency above the Class AB amplifier by 5-7% from 5-30mW of output power without affecting the total harmonic distortion (THD) at the design specifications. The Class H amplifier design met all design specifications and showed performance comparable to the designed Class AB amplifier across 1kHz-20kHz and 0.01mW-30mW. The Class H design was able to output 30mW into 16Ohms without any increase in THD. This design shows that Class H amplifiers merit more research into their potential for increasing efficiency of audio amplifiers and that even simple designs can give significant increases in efficiency without compromising linearity.
ContributorsPeterson, Cory (Author) / Bakkaloglu, Bertan (Thesis advisor) / Barnaby, Hugh (Committee member) / Kiaei, Sayfe (Committee member) / Arizona State University (Publisher)
Created2013
152867-Thumbnail Image.png
Description
There is an ever growing need for larger memories which are reliable and fast. New technologies to implement non-volatile memories which are large, fast, compact and cost-efficient are being studied extensively. One of the most promising technologies being developed is the resistive RAM (ReRAM). In ReRAM the resistance of the

There is an ever growing need for larger memories which are reliable and fast. New technologies to implement non-volatile memories which are large, fast, compact and cost-efficient are being studied extensively. One of the most promising technologies being developed is the resistive RAM (ReRAM). In ReRAM the resistance of the device varies with the voltage applied across it. Programmable metallization cells (PMC) is one of the devices belonging to this category of non-volatile memories.

In order to advance the development of these devices, there is a need to develop simulation models which replicate the behavior of these devices in circuits. In this thesis, a verilogA model for the PMC has been developed. The behavior of the model has been tested using DC and transient simulations. Experimental data obtained from testing PMC devices fabricated at Arizona State University have been compared to results obtained from simulation.

A basic memory cell known as the 1T 1R cell built using the PMC has also been simulated and verified. These memory cells have the potential to be building blocks of large scale memories. I believe that the verilogA model developed in this thesis will prove to be a powerful tool for researchers and circuit developers looking to develop non-volatile memories using alternative technologies.
ContributorsBharadwaj, Vineeth (Author) / Barnaby, Hugh (Thesis advisor) / Kozicki, Michael (Committee member) / Mikkola, Esko (Committee member) / Arizona State University (Publisher)
Created2014
152978-Thumbnail Image.png
Description
Nonvolatile memory (NVM) technologies have been an integral part of electronic systems for the past 30 years. The ideal non-volatile memory have minimal physical size, energy usage, and cost while having maximal speed, capacity, retention time, and radiation hardness. A promising candidate for next-generation memory is ion-conducting bridging RAM which

Nonvolatile memory (NVM) technologies have been an integral part of electronic systems for the past 30 years. The ideal non-volatile memory have minimal physical size, energy usage, and cost while having maximal speed, capacity, retention time, and radiation hardness. A promising candidate for next-generation memory is ion-conducting bridging RAM which is referred to as programmable metallization cell (PMC), conductive bridge RAM (CBRAM), or electrochemical metallization memory (ECM), which is likely to surpass flash memory in all the ideal memory characteristics. A comprehensive physics-based model is needed to completely understand PMC operation and assist in design optimization.

To advance the PMC modeling effort, this thesis presents a precise physical model parameterizing materials associated with both ion-rich and ion-poor layers of the PMC's solid electrolyte, so that captures the static electrical behavior of the PMC in both its low-resistance on-state (LRS) and high resistance off-state (HRS). The experimental data is measured from a chalcogenide glass PMC designed and manufactured at ASU. The static on- and off-state resistance of a PMC device composed of a layered (Ag-rich/Ag-poor) Ge30Se70 ChG film is characterized and modeled using three dimensional simulation code written in Silvaco Atlas finite element analysis software. Calibrating the model to experimental data enables the extraction of device parameters such as material bandgaps, workfunctions, density of states, carrier mobilities, dielectric constants, and affinities.

The sensitivity of our modeled PMC to the variation of its prominent achieved material parameters is examined on the HRS and LRS impedance behavior.

The obtained accurate set of material parameters for both Ag-rich and Ag-poor ChG systems and process variation verification on electrical characteristics enables greater fidelity in PMC device simulation, which significantly enhances our ability to understand the underlying physics of ChG-based resistive switching memory.
ContributorsRajabi, Saba (Author) / Barnaby, Hugh (Thesis advisor) / Kozicki, Michael (Committee member) / Vasileska, Dragica (Committee member) / Arizona State University (Publisher)
Created2014
150544-Thumbnail Image.png
Description
Limited Local Memory (LLM) multicore architectures are promising powerefficient architectures will scalable memory hierarchy. In LLM multicores, each core can access only a small local memory. Accesses to a large shared global memory can only be made explicitly through Direct Memory Access (DMA) operations. Standard Template Library (STL) is a

Limited Local Memory (LLM) multicore architectures are promising powerefficient architectures will scalable memory hierarchy. In LLM multicores, each core can access only a small local memory. Accesses to a large shared global memory can only be made explicitly through Direct Memory Access (DMA) operations. Standard Template Library (STL) is a powerful programming tool and is widely used for software development. STLs provide dynamic data structures, algorithms, and iterators for vector, deque (double-ended queue), list, map (red-black tree), etc. Since the size of the local memory is limited in the cores of the LLM architecture, and data transfer is not automatically supported by hardware cache or OS, the usage of current STL implementation on LLM multicores is limited. Specifically, there is a hard limitation on the amount of data they can handle. In this article, we propose and implement a framework which manages the STL container classes on the local memory of LLM multicore architecture. Our proposal removes the data size limitation of the STL, and therefore improves the programmability on LLM multicore architectures with little change to the original program. Our implementation results in only about 12%-17% increase in static library code size and reasonable runtime overheads.
ContributorsLu, Di (Author) / Shrivastava, Aviral (Thesis advisor) / Chatha, Karamvir (Committee member) / Dasgupta, Partha (Committee member) / Arizona State University (Publisher)
Created2012
154176-Thumbnail Image.png
Description
Programmable metallization cell (PMC) technology employs the mechanisms of metal ion transport in solid electrolytes (SE) and electrochemical redox reactions in order to form metallic electrodeposits. When a positive bias is applied to an anode opposite to a cathode, atoms at the anode are oxidized to ions and dissolve into

Programmable metallization cell (PMC) technology employs the mechanisms of metal ion transport in solid electrolytes (SE) and electrochemical redox reactions in order to form metallic electrodeposits. When a positive bias is applied to an anode opposite to a cathode, atoms at the anode are oxidized to ions and dissolve into the SE. Under the influence of the electric field, the ions move to the cathode and become reduced to form the electrodeposits. These electrodeposits are filamentary in nature and persistent, and since they are metallic can alter the physical characteristics of the material on which they are formed. PMCs can be used as next generation memories, radio frequency (RF) switches and physical unclonable functions (PUFs).

The morphology of the filaments is impacted by the biasing conditions. Under a relatively high applied electric field, they form as dendritic elements with a low fractal dimension (FD), whereas a low electric field leads to high FD features. Ion depletion effects in the SE due to low ion diffusivity/mobility also influences the morphology by limiting the ion supply into the growing electrodeposit.

Ion transport in SE is due to hopping transitions driven by drift and diffusion force. A physical model of ion hopping with Brownian motion has been proposed, in which the ion transitions are random when time window is larger than characteristic time. The random growth process of filaments in PMC adds entropy to the electrodeposition, which leads to random features in the dendritic patterns. Such patterns has extremely high information capacity due to the fractal nature of the electrodeposits.

In this project, lateral-growth PMCs were fabricated, whose LRS resistance is less than 10Ω, which can be used as RF switches. Also, an array of radial-growth PMCs was fabricated, on which multiple dendrites, all with different shapes, could be grown simultaneously. Those patterns can be used as secure keys in PUFs and authentication can be performed by optical scanning.

A kinetic Monte Carlo (KMC) model is developed to simulate the ion transportation in SE under electric field. The simulation results matched experimental data well that validated the ion hopping model.
ContributorsYu, Weijie (Author) / Kozicki, Michael N (Thesis advisor) / Barnaby, Hugh (Thesis advisor) / Diaz, Rodolfo (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2015
153606-Thumbnail Image.png
Description
Non-volatile memory (NVM) has become a staple in the everyday life of consumers. NVM manifests inside cell phones, laptops, and most recently, wearable tech such as smart watches. NAND Flash has been an excellent solution to conditions requiring fast, compact NVM. Current technology nodes are nearing the physical limits of

Non-volatile memory (NVM) has become a staple in the everyday life of consumers. NVM manifests inside cell phones, laptops, and most recently, wearable tech such as smart watches. NAND Flash has been an excellent solution to conditions requiring fast, compact NVM. Current technology nodes are nearing the physical limits of scaling, preventing flash from improving. To combat the limitations of flash and to appease consumer demand for progressively faster and denser NVM, new technologies are needed. One possible candidate for the replacement of NAND Flash is programmable metallization cells (PMC). PMC are a type of resistive memory, meaning that they do not rely on charge storage to maintain a logic state. Depending on their application, it is possible that devices containing NVM will be exposed to harsh radiation environments. As part of the process for developing a novel memory technology, it is important to characterize the effects irradiation has on the functionality of the devices.

This thesis characterizes the effects that ionizing γ-ray irradiation has on the retention of the programmed resistive state of a PMC. The PMC devices tested used Ge30Se70 doped with Ag as the solid electrolyte layer and were fabricated by the thesis author in a Class 100 clean room. Individual device tiles were wire bonded into ceramic packages and tested in a biased and floating contact scenario.

The first scenario presented shows that PMC devices are capable of retaining their programmed state up to the maximum exposed total ionizing dose (TID) of 3.1 Mrad(Si). In this first scenario, the contacts of the PMC devices were left floating during exposure. The second scenario tested shows that the PMC devices are capable of retaining their state until the maximum TID of 10.1 Mrad(Si) was reached. The contacts in the second scenario were biased, with a 50 mV read voltage applied to the anode contact. Analysis of the results show that Ge30Se70 PMC are ionizing radiation tolerant and can retain a programmed state to a higher TID than NAND Flash memory.
ContributorsTaggart, Jennifer Lynn (Author) / Barnaby, Hugh (Thesis advisor) / Kozicki, Michael (Committee member) / Holbert, Keith E. (Committee member) / Arizona State University (Publisher)
Created2015