Matching Items (5)
Filtering by

Clear all filters

151656-Thumbnail Image.png
Description
Image resolution limits the extent to which zooming enhances clarity, restricts the size digital photographs can be printed at, and, in the context of medical images, can prevent a diagnosis. Interpolation is the supplementing of known data with estimated values based on a function or model involving some or all

Image resolution limits the extent to which zooming enhances clarity, restricts the size digital photographs can be printed at, and, in the context of medical images, can prevent a diagnosis. Interpolation is the supplementing of known data with estimated values based on a function or model involving some or all of the known samples. The selection of the contributing data points and the specifics of how they are used to define the interpolated values influences how effectively the interpolation algorithm is able to estimate the underlying, continuous signal. The main contributions of this dissertation are three fold: 1) Reframing edge-directed interpolation of a single image as an intensity-based registration problem. 2) Providing an analytical framework for intensity-based registration using control grid constraints. 3) Quantitative assessment of the new, single-image enlargement algorithm based on analytical intensity-based registration. In addition to single image resizing, the new methods and analytical approaches were extended to address a wide range of applications including volumetric (multi-slice) image interpolation, video deinterlacing, motion detection, and atmospheric distortion correction. Overall, the new approaches generate results that more accurately reflect the underlying signals than less computationally demanding approaches and with lower processing requirements and fewer restrictions than methods with comparable accuracy.
ContributorsZwart, Christine M. (Author) / Frakes, David H (Thesis advisor) / Karam, Lina (Committee member) / Kodibagkar, Vikram (Committee member) / Spanias, Andreas (Committee member) / Towe, Bruce (Committee member) / Arizona State University (Publisher)
Created2013
153394-Thumbnail Image.png
Description
As a promising solution to the problem of acquiring and storing large amounts of image and video data, spatial-multiplexing camera architectures have received lot of attention in the recent past. Such architectures have the attractive feature of combining a two-step process of acquisition and compression of pixel measurements in a

As a promising solution to the problem of acquiring and storing large amounts of image and video data, spatial-multiplexing camera architectures have received lot of attention in the recent past. Such architectures have the attractive feature of combining a two-step process of acquisition and compression of pixel measurements in a conventional camera, into a single step. A popular variant is the single-pixel camera that obtains measurements of the scene using a pseudo-random measurement matrix. Advances in compressive sensing (CS) theory in the past decade have supplied the tools that, in theory, allow near-perfect reconstruction of an image from these measurements even for sub-Nyquist sampling rates. However, current state-of-the-art reconstruction algorithms suffer from two drawbacks -- They are (1) computationally very expensive and (2) incapable of yielding high fidelity reconstructions for high compression ratios. In computer vision, the final goal is usually to perform an inference task using the images acquired and not signal recovery. With this motivation, this thesis considers the possibility of inference directly from compressed measurements, thereby obviating the need to use expensive reconstruction algorithms. It is often the case that non-linear features are used for inference tasks in computer vision. However, currently, it is unclear how to extract such features from compressed measurements. Instead, using the theoretical basis provided by the Johnson-Lindenstrauss lemma, discriminative features using smashed correlation filters are derived and it is shown that it is indeed possible to perform reconstruction-free inference at high compression ratios with only a marginal loss in accuracy. As a specific inference problem in computer vision, face recognition is considered, mainly beyond the visible spectrum such as in the short wave infra-red region (SWIR), where sensors are expensive.
ContributorsLohit, Suhas Anand (Author) / Turaga, Pavan (Thesis advisor) / Spanias, Andreas (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2015
153241-Thumbnail Image.png
Description
Thousands of high-resolution images are generated each day. Detecting and analyzing variations in these images are key steps in image understanding. This work focuses on spatial and multitemporal

visual change detection and its applications in multi-temporal synthetic aperture radar (SAR) images.

The Canny edge detector is one of the most widely-used edge

Thousands of high-resolution images are generated each day. Detecting and analyzing variations in these images are key steps in image understanding. This work focuses on spatial and multitemporal

visual change detection and its applications in multi-temporal synthetic aperture radar (SAR) images.

The Canny edge detector is one of the most widely-used edge detection algorithms due to its superior performance in terms of SNR and edge localization and only one response to a single edge. In this work, we propose a mechanism to implement the Canny algorithm at the block level without any loss in edge detection performance as compared to the original frame-level Canny algorithm. The resulting block-based algorithm has significantly reduced memory requirements and can achieve a significantly reduced latency. Furthermore, the proposed algorithm can be easily integrated with other block-based image processing systems. In addition, quantitative evaluations and subjective tests show that the edge detection performance of the proposed algorithm is better than the original frame-based algorithm, especially when noise is present in the images.

In the context of multi-temporal SAR images for earth monitoring applications, one critical issue is the detection of changes occurring after a natural or anthropic disaster. In this work, we propose a novel similarity measure for automatic change detection using a pair of SAR images

acquired at different times and apply it in both the spatial and wavelet domains. This measure is based on the evolution of the local statistics of the image between two dates. The local statistics are modeled as a Gaussian Mixture Model (GMM), which is more suitable and flexible to approximate the local distribution of the SAR image with distinct land-cover typologies. Tests on real datasets show that the proposed detectors outperform existing methods in terms of the quality of the similarity maps, which are assessed using the receiver operating characteristic (ROC) curves, and in terms of the total error rates of the final change detection maps. Furthermore, we proposed a new

similarity measure for automatic change detection based on a divisive normalization transform in order to reduce the computation complexity. Tests show that our proposed DNT-based change detector

exhibits competitive detection performance while achieving lower computational complexity as compared to previously suggested methods.
ContributorsXu, Qian (Author) / Karam, Lina J (Thesis advisor) / Chakrabarti, Chaitali (Committee member) / Bliss, Daniel (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Arizona State University (Publisher)
Created2014
149915-Thumbnail Image.png
Description
Spotlight mode synthetic aperture radar (SAR) imaging involves a tomo- graphic reconstruction from projections, necessitating acquisition of large amounts of data in order to form a moderately sized image. Since typical SAR sensors are hosted on mobile platforms, it is common to have limitations on SAR data acquisi- tion, storage

Spotlight mode synthetic aperture radar (SAR) imaging involves a tomo- graphic reconstruction from projections, necessitating acquisition of large amounts of data in order to form a moderately sized image. Since typical SAR sensors are hosted on mobile platforms, it is common to have limitations on SAR data acquisi- tion, storage and communication that can lead to data corruption and a resulting degradation of image quality. It is convenient to consider corrupted samples as missing, creating a sparsely sampled aperture. A sparse aperture would also result from compressive sensing, which is a very attractive concept for data intensive sen- sors such as SAR. Recent developments in sparse decomposition algorithms can be applied to the problem of SAR image formation from a sparsely sampled aperture. Two modified sparse decomposition algorithms are developed, based on well known existing algorithms, modified to be practical in application on modest computa- tional resources. The two algorithms are demonstrated on real-world SAR images. Algorithm performance with respect to super-resolution, noise, coherent speckle and target/clutter decomposition is explored. These algorithms yield more accu- rate image reconstruction from sparsely sampled apertures than classical spectral estimators. At the current state of development, sparse image reconstruction using these two algorithms require about two orders of magnitude greater processing time than classical SAR image formation.
ContributorsWerth, Nicholas (Author) / Karam, Lina (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Spanias, Andreas (Committee member) / Arizona State University (Publisher)
Created2011
154364-Thumbnail Image.png
Description
The quality of real-world visual content is typically impaired by many factors including image noise and blur. Detecting and analyzing these impairments are important steps for multiple computer vision tasks. This work focuses on perceptual-based locally adaptive noise and blur detection and their application to image restoration.

In the context of

The quality of real-world visual content is typically impaired by many factors including image noise and blur. Detecting and analyzing these impairments are important steps for multiple computer vision tasks. This work focuses on perceptual-based locally adaptive noise and blur detection and their application to image restoration.

In the context of noise detection, this work proposes perceptual-based full-reference and no-reference objective image quality metrics by integrating perceptually weighted local noise into a probability summation model. Results are reported on both the LIVE and TID2008 databases. The proposed metrics achieve consistently a good performance across noise types and across databases as compared to many of the best very recent quality metrics. The proposed metrics are able to predict with high accuracy the relative amount of perceived noise in images of different content.

In the context of blur detection, existing approaches are either computationally costly or cannot perform reliably when dealing with the spatially-varying nature of the defocus blur. In addition, many existing approaches do not take human perception into account. This work proposes a blur detection algorithm that is capable of detecting and quantifying the level of spatially-varying blur by integrating directional edge spread calculation, probability of blur detection and local probability summation. The proposed method generates a blur map indicating the relative amount of perceived local blurriness. In order to detect the flat
ear flat regions that do not contribute to perceivable blur, a perceptual model based on the Just Noticeable Difference (JND) is further integrated in the proposed blur detection algorithm to generate perceptually significant blur maps. We compare our proposed method with six other state-of-the-art blur detection methods. Experimental results show that the proposed method performs the best both visually and quantitatively.

This work further investigates the application of the proposed blur detection methods to image deblurring. Two selective perceptual-based image deblurring frameworks are proposed, to improve the image deblurring results and to reduce the restoration artifacts. In addition, an edge-enhanced super resolution algorithm is proposed, and is shown to achieve better reconstructed results for the edge regions.
ContributorsZhu, Tong (Author) / Karam, Lina (Thesis advisor) / Li, Baoxin (Committee member) / Bliss, Daniel (Committee member) / Myint, Soe (Committee member) / Arizona State University (Publisher)
Created2016