Matching Items (29)

152506-Thumbnail Image.png

Cluster metrics and temporal coherency in pixel based matrices

Description

In this thesis, the application of pixel-based vertical axes used within parallel coordinate plots is explored in an attempt to improve how existing tools can explain complex multivariate interactions across temporal data. Several promising visualization techniques are combined, such as:

In this thesis, the application of pixel-based vertical axes used within parallel coordinate plots is explored in an attempt to improve how existing tools can explain complex multivariate interactions across temporal data. Several promising visualization techniques are combined, such as: visual boosting to allow for quicker consumption of large data sets, the bond energy algorithm to find finer patterns and anomalies through contrast, multi-dimensional scaling, flow lines, user guided clustering, and row-column ordering. User input is applied on precomputed data sets to provide for real time interaction. General applicability of the techniques are tested against industrial trade, social networking, financial, and sparse data sets of varying dimensionality.

Contributors

Agent

Created

Date Created
2014

152389-Thumbnail Image.png

Automated animal coloration quantification in digital images using dominant colors and skin classification

Description

The origin and function of color in animals has been a subject of great interest for taxonomists and ecologists in recent years. Coloration in animals is useful for many important functions like species identification, camouflage and understanding evolutionary relationships. Quantitative

The origin and function of color in animals has been a subject of great interest for taxonomists and ecologists in recent years. Coloration in animals is useful for many important functions like species identification, camouflage and understanding evolutionary relationships. Quantitative measurements of color signal and patch size in mammals, birds and reptiles, to name a few are strong indicators of sexual selection cues and individual health. These measurements provide valuable insights into the impact of environmental conditions on habitat and breeding of mammals, birds and reptiles. Recent advances in the area of digital cameras and sensors have led to a significant increase in the use of digital photography as a means of color quantification in animals. Although a significant amount of research has been conducted on ways to standardize image acquisition conditions and calibrate cameras for use in animal color quantification, almost no work has been done on designing automated methods for animal color quantification. This thesis presents a novel perceptual"–"based framework for the automated extraction and quantification of animal coloration from digital images with slowly varying (almost homogenous) background colors. This implemented framework uses a combination of several techniques including color space quantization using a few dominant colors, foreground"–"background identification, Bayesian classification and mixture Gaussian modelling of conditional densities, edge"–"enhanced model"–"based classification and Saturation"–"Brightness quantization to extract the colored patch. This approach assumes no prior information about the color of either the subject or the background and also the position of the subject in the image. The performance of the proposed method is evaluated for the plumage color of the wild house finches. Segmentation results obtained using the implemented framework are compared with manually scored results to illustrate the performance of this system. The segmentation results show a high correlation with manually scored images. This novel framework also eliminates common problems in manual scoring of digital images such as low repeatability and inter"–"observer error.

Contributors

Agent

Created

Date Created
2013

151120-Thumbnail Image.png

Clinically relevant classification and retrieval of diabetic retinopathy images

Description

Diabetic retinopathy (DR) is a common cause of blindness occurring due to prolonged presence of diabetes. The risk of developing DR or having the disease progress is increasing over time. Despite advances in diabetes care over the years, DR remains

Diabetic retinopathy (DR) is a common cause of blindness occurring due to prolonged presence of diabetes. The risk of developing DR or having the disease progress is increasing over time. Despite advances in diabetes care over the years, DR remains a vision-threatening complication and one of the leading causes of blindness among American adults. Recent studies have shown that diagnosis based on digital retinal imaging has potential benefits over traditional face-to-face evaluation. Yet there is a dearth of computer-based systems that can match the level of performance achieved by ophthalmologists. This thesis takes a fresh perspective in developing a computer-based system aimed at improving diagnosis of DR images. These images are categorized into three classes according to their severity level. The proposed approach explores effective methods to classify new images and retrieve clinically-relevant images from a database with prior diagnosis information associated with them. Retrieval provides a novel way to utilize the vast knowledge in the archives of previously-diagnosed DR images and thereby improve a clinician's performance while classification can safely reduce the burden on DR screening programs and possibly achieve higher detection accuracy than human experts. To solve the three-class retrieval and classification problem, the approach uses a multi-class multiple-instance medical image retrieval framework that makes use of spectrally tuned color correlogram and steerable Gaussian filter response features. The results show better retrieval and classification performances than prior-art methods and are also observed to be of clinical and visual relevance.

Contributors

Agent

Created

Date Created
2012

153947-Thumbnail Image.png

Particle image segmentation based on Bhattacharyya distance

Description

Image segmentation is of great importance and value in many applications. In computer vision, image segmentation is the tool and process of locating objects and boundaries within images. The segmentation result may provide more meaningful image data. Generally, there are

Image segmentation is of great importance and value in many applications. In computer vision, image segmentation is the tool and process of locating objects and boundaries within images. The segmentation result may provide more meaningful image data. Generally, there are two fundamental image segmentation algorithms: discontinuity and similarity. The idea behind discontinuity is locating the abrupt changes in intensity of images, as are often seen in edges or boundaries. Similarity subdivides an image into regions that fit the pre-defined criteria. The algorithm utilized in this thesis is the second category.

This study addresses the problem of particle image segmentation by measuring the similarity between a sampled region and an adjacent region, based on Bhattacharyya distance and an image feature extraction technique that uses distribution of local binary patterns and pattern contrasts. A boundary smoothing process is developed to improve the accuracy of the segmentation. The novel particle image segmentation algorithm is tested using four different cases of particle image velocimetry (PIV) images. The obtained experimental results of segmentations provide partitioning of the objects within 10 percent error rate. Ground-truth segmentation data, which are manually segmented image from each case, are used to calculate the error rate of the segmentations.

Contributors

Agent

Created

Date Created
2015

154364-Thumbnail Image.png

Perceptual-based locally adaptive noise and blur detection

Description

The quality of real-world visual content is typically impaired by many factors including image noise and blur. Detecting and analyzing these impairments are important steps for multiple computer vision tasks. This work focuses on perceptual-based locally adaptive noise and blur

The quality of real-world visual content is typically impaired by many factors including image noise and blur. Detecting and analyzing these impairments are important steps for multiple computer vision tasks. This work focuses on perceptual-based locally adaptive noise and blur detection and their application to image restoration.

In the context of noise detection, this work proposes perceptual-based full-reference and no-reference objective image quality metrics by integrating perceptually weighted local noise into a probability summation model. Results are reported on both the LIVE and TID2008 databases. The proposed metrics achieve consistently a good performance across noise types and across databases as compared to many of the best very recent quality metrics. The proposed metrics are able to predict with high accuracy the relative amount of perceived noise in images of different content.

In the context of blur detection, existing approaches are either computationally costly or cannot perform reliably when dealing with the spatially-varying nature of the defocus blur. In addition, many existing approaches do not take human perception into account. This work proposes a blur detection algorithm that is capable of detecting and quantifying the level of spatially-varying blur by integrating directional edge spread calculation, probability of blur detection and local probability summation. The proposed method generates a blur map indicating the relative amount of perceived local blurriness. In order to detect the flat
ear flat regions that do not contribute to perceivable blur, a perceptual model based on the Just Noticeable Difference (JND) is further integrated in the proposed blur detection algorithm to generate perceptually significant blur maps. We compare our proposed method with six other state-of-the-art blur detection methods. Experimental results show that the proposed method performs the best both visually and quantitatively.

This work further investigates the application of the proposed blur detection methods to image deblurring. Two selective perceptual-based image deblurring frameworks are proposed, to improve the image deblurring results and to reduce the restoration artifacts. In addition, an edge-enhanced super resolution algorithm is proposed, and is shown to achieve better reconstructed results for the edge regions.

Contributors

Agent

Created

Date Created
2016

149965-Thumbnail Image.png

Image processing an experimental analysis of image processing in fluidic process

Description

Image processing in canals, rivers and other bodies of water has been a very important concern. This research using Image Processing was performed to obtain a photographic evidence of the data of the site which helps in monitoring the conditions

Image processing in canals, rivers and other bodies of water has been a very important concern. This research using Image Processing was performed to obtain a photographic evidence of the data of the site which helps in monitoring the conditions of the water body and the surroundings. Images are captured using a digital camera and the images are stored onto a datalogger, these images are retrieved using a cellular/ satellite modem. A MATLAB program was designed to obtain the level of water by just entering the file name into to the program, a curve fit model was created to determine the contrast parameters. The contrast parameters were obtained using the data obtained from the gray scale image mainly the mean and variance of the intensity values. The enhanced images are used to determine the level of water by taking pixel intensity plots along the region of interest. The level of water obtained is accurate to less than 2% of the actual level of water observed from the image. High speed imaging in micro channels have various application in industrial field, medical field etc. In medical field it is tested by using blood samples. The experimental procedure proposed determines the flow duration and the defects observed in these channel using a fluid introduced into the micro channel the fluid being water based dye and whole milk. The viscosity of the fluid shows different types of flow patterns and defects in the micro channel. The defects observed vary from a small effect to the flow pattern to an extreme defect in the channel such as obstruction of flow or deformation in the channel. The sample needs to be further analyzed by SEM to get a better insight on the defects.

Contributors

Agent

Created

Date Created
2011

149991-Thumbnail Image.png

Compressive sensing for computer vision and image processing

Description

With the introduction of compressed sensing and sparse representation,many image processing and computer vision problems have been looked at in a new way. Recent trends indicate that many challenging computer vision and image processing problems are being solved using compressive

With the introduction of compressed sensing and sparse representation,many image processing and computer vision problems have been looked at in a new way. Recent trends indicate that many challenging computer vision and image processing problems are being solved using compressive sensing and sparse representation algorithms. This thesis assays some applications of compressive sensing and sparse representation with regards to image enhancement, restoration and classication. The first application deals with image Super-Resolution through compressive sensing based sparse representation. A novel framework is developed for understanding and analyzing some of the implications of compressive sensing in reconstruction and recovery of an image through raw-sampled and trained dictionaries. Properties of the projection operator and the dictionary are examined and the corresponding results presented. In the second application a novel technique for representing image classes uniquely in a high-dimensional space for image classification is presented. In this method, design and implementation strategy of the image classification system through unique affine sparse codes is presented, which leads to state of the art results. This further leads to analysis of some of the properties attributed to these unique sparse codes. In addition to obtaining these codes, a strong classier is designed and implemented to boost the results obtained. Evaluation with publicly available datasets shows that the proposed method outperforms other state of the art results in image classication. The final part of the thesis deals with image denoising with a novel approach towards obtaining high quality denoised image patches using only a single image. A new technique is proposed to obtain highly correlated image patches through sparse representation, which are then subjected to matrix completion to obtain high quality image patches. Experiments suggest that there may exist a structure within a noisy image which can be exploited for denoising through a low-rank constraint.

Contributors

Agent

Created

Date Created
2011

150440-Thumbnail Image.png

Efficient perceptual super-resolution

Description

Super-Resolution (SR) techniques are widely developed to increase image resolution by fusing several Low-Resolution (LR) images of the same scene to overcome sensor hardware limitations and reduce media impairments in a cost-effective manner. When choosing a solution for the SR

Super-Resolution (SR) techniques are widely developed to increase image resolution by fusing several Low-Resolution (LR) images of the same scene to overcome sensor hardware limitations and reduce media impairments in a cost-effective manner. When choosing a solution for the SR problem, there is always a trade-off between computational efficiency and High-Resolution (HR) image quality. Existing SR approaches suffer from extremely high computational requirements due to the high number of unknowns to be estimated in the solution of the SR inverse problem. This thesis proposes efficient iterative SR techniques based on Visual Attention (VA) and perceptual modeling of the human visual system. In the first part of this thesis, an efficient ATtentive-SELective Perceptual-based (AT-SELP) SR framework is presented, where only a subset of perceptually significant active pixels is selected for processing by the SR algorithm based on a local contrast sensitivity threshold model and a proposed low complexity saliency detector. The proposed saliency detector utilizes a probability of detection rule inspired by concepts of luminance masking and visual attention. The second part of this thesis further enhances on the efficiency of selective SR approaches by presenting an ATtentive (AT) SR framework that is completely driven by VA region detectors. Additionally, different VA techniques that combine several low-level features, such as center-surround differences in intensity and orientation, patch luminance and contrast, bandpass outputs of patch luminance and contrast, and difference of Gaussians of luminance intensity are integrated and analyzed to illustrate the effectiveness of the proposed selective SR frameworks. The proposed AT-SELP SR and AT-SR frameworks proved to be flexible by integrating a Maximum A Posteriori (MAP)-based SR algorithm as well as a fast two-stage Fusion-Restoration (FR) SR estimator. By adopting the proposed selective SR frameworks, simulation results show significant reduction on average in computational complexity with comparable visual quality in terms of quantitative metrics such as PSNR, SNR or MAE gains, and subjective assessment. The third part of this thesis proposes a Perceptually Weighted (WP) SR technique that incorporates unequal weighting parameters in the cost function of iterative SR problems. The proposed approach is inspired by the unequal processing of the Human Visual System (HVS) to different local image features in an image. Simulation results show an enhanced reconstruction quality and faster convergence rates when applied to the MAP-based and FR-based SR schemes.

Contributors

Agent

Created

Date Created
2011

150353-Thumbnail Image.png

Augmented image classification using image registration techniques

Description

Advancements in computer vision and machine learning have added a new dimension to remote sensing applications with the aid of imagery analysis techniques. Applications such as autonomous navigation and terrain classification which make use of image classification techniques are challenging

Advancements in computer vision and machine learning have added a new dimension to remote sensing applications with the aid of imagery analysis techniques. Applications such as autonomous navigation and terrain classification which make use of image classification techniques are challenging problems and research is still being carried out to find better solutions. In this thesis, a novel method is proposed which uses image registration techniques to provide better image classification. This method reduces the error rate of classification by performing image registration of the images with the previously obtained images before performing classification. The motivation behind this is the fact that images that are obtained in the same region which need to be classified will not differ significantly in characteristics. Hence, registration will provide an image that matches closer to the previously obtained image, thus providing better classification. To illustrate that the proposed method works, naïve Bayes and iterative closest point (ICP) algorithms are used for the image classification and registration stages respectively. This implementation was tested extensively in simulation using synthetic images and using a real life data set called the Defense Advanced Research Project Agency (DARPA) Learning Applied to Ground Robots (LAGR) dataset. The results show that the ICP algorithm does help in better classification with Naïve Bayes by reducing the error rate by an average of about 10% in the synthetic data and by about 7% on the actual datasets used.

Contributors

Agent

Created

Date Created
2011

150281-Thumbnail Image.png

Repurposing technology: an innovative low cost two-dimensional noncontact measurement tool

Description

Two-dimensional vision-based measurement is an ideal choice for measuring small or fragile parts that could be damaged using conventional contact measurement methods. Two-dimensional vision-based measurement systems can be quite expensive putting the technology out of reach of inventors and others.

Two-dimensional vision-based measurement is an ideal choice for measuring small or fragile parts that could be damaged using conventional contact measurement methods. Two-dimensional vision-based measurement systems can be quite expensive putting the technology out of reach of inventors and others. The vision-based measurement tool design developed in this thesis is a low cost alternative that can be made for less than $500US from off-the-shelf parts and free software. The design is based on the USB microscope. The USB microscope was once considered a toy, similar to the telescopes and microscopes of the 17th century, but has recently started finding applications in industry, laboratories, and schools. In order to convert the USB microscope into a measurement tool, research in the following areas was necessary: currently available vision-based measurement systems, machine vision technologies, microscope design, photographic methods, digital imaging, illumination, edge detection, and computer aided drafting applications. The result of the research was a two-dimensional vision-based measurement system that is extremely versatile, easy to use, and, best of all, inexpensive.

Contributors

Agent

Created

Date Created
2011