Matching Items (13)
Filtering by

Clear all filters

153496-Thumbnail Image.png
Description
An important operating aspect of all transmission systems is power system stability

and satisfactory dynamic performance. The integration of renewable resources in general, and photovoltaic resources in particular into the grid has created new engineering issues. A particularly problematic operating scenario occurs when conventional generation is operated at a low level

An important operating aspect of all transmission systems is power system stability

and satisfactory dynamic performance. The integration of renewable resources in general, and photovoltaic resources in particular into the grid has created new engineering issues. A particularly problematic operating scenario occurs when conventional generation is operated at a low level but photovoltaic solar generation is at a high level. Significant solar photovoltaic penetration as a renewable resource is becoming a reality in some electric power systems. In this thesis, special attention is given to photovoltaic generation in an actual electric power system: increased solar penetration has resulted in significant strides towards meeting renewable portfolio standards. The impact of solar generation integration on power system dynamics is studied and evaluated.

This thesis presents the impact of high solar penetration resulting in potentially

problematic low system damping operating conditions. This is the case because the power system damping provided by conventional generation may be insufficient due to reduced system inertia and change in power flow patterns affecting synchronizing and damping capability in the AC system. This typically occurs because conventional generators are rescheduled or shut down to allow for the increased solar production. This problematic case may occur at any time of the year but during the springtime months of March-May, when the system load is low and the ambient temperature is relatively low, there is the potential that over voltages may occur in the high voltage transmission system. Also, reduced damping in system response to disturbances may occur. An actual case study is considered in which real operating system data are used. Solutions to low damping cases are discussed and a solution based on the retuning of a conventional power system stabilizer is given in the thesis.
ContributorsPethe, Anushree Sanjeev (Author) / Vittal, Vijay (Thesis advisor) / Heydt, Gerald T (Thesis advisor) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2015
150298-Thumbnail Image.png
Description
Due to restructuring and open access to the transmission system, modern electric power systems are being operated closer to their operational limits. Additionally, the secure operational limits of modern power systems have become increasingly difficult to evaluate as the scale of the network and the number of transactions between utilities

Due to restructuring and open access to the transmission system, modern electric power systems are being operated closer to their operational limits. Additionally, the secure operational limits of modern power systems have become increasingly difficult to evaluate as the scale of the network and the number of transactions between utilities increase. To account for these challenges associated with the rapid expansion of electric power systems, dynamic equivalents have been widely applied for the purpose of reducing the computational effort of simulation-based transient security assessment. Dynamic equivalents are commonly developed using a coherency-based approach in which a retained area and an external area are first demarcated. Then the coherent generators in the external area are aggregated and replaced by equivalenced models, followed by network reduction and load aggregation. In this process, an improperly defined retained area can result in detrimental impacts on the effectiveness of the equivalents in preserving the dynamic characteristics of the original unreduced system. In this dissertation, a comprehensive approach has been proposed to determine an appropriate retained area boundary by including the critical generators in the external area that are tightly coupled with the initial retained area. Further-more, a systematic approach has also been investigated to efficiently predict the variation in generator slow coherency behavior when the system operating condition is subject to change. Based on this determination, the critical generators in the external area that are tightly coherent with the generators in the initial retained area are retained, resulting in a new retained area boundary. Finally, a novel hybrid dynamic equivalent, consisting of both a coherency-based equivalent and an artificial neural network (ANN)-based equivalent, has been proposed and analyzed. The ANN-based equivalent complements the coherency-based equivalent at all the retained area boundary buses, and it is designed to compensate for the discrepancy between the full system and the conventional coherency-based equivalent. The approaches developed have been validated on a large portion of the Western Electricity Coordinating Council (WECC) system and on a test case including a significant portion of the eastern interconnection.
ContributorsMa, Feng (Author) / Vittal, Vijay (Thesis advisor) / Tylavsky, Daniel (Committee member) / Heydt, Gerald (Committee member) / Si, Jennie (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2011
149932-Thumbnail Image.png
Description
Recent changes in the energy markets structure combined with the conti-nuous load growth have caused power systems to be operated under more stressed conditions. In addition, the nature of power systems has also grown more complex and dynamic because of the increasing use of long inter-area tie-lines and the high

Recent changes in the energy markets structure combined with the conti-nuous load growth have caused power systems to be operated under more stressed conditions. In addition, the nature of power systems has also grown more complex and dynamic because of the increasing use of long inter-area tie-lines and the high motor loads especially those comprised mainly of residential single phase A/C motors. Therefore, delayed voltage recovery, fast voltage collapse and short term voltage stability issues in general have obtained significant importance in relia-bility studies. Shunt VAr injection has been used as a countermeasure for voltage instability. However, the dynamic and fast nature of short term voltage instability requires fast and sufficient VAr injection, and therefore dynamic VAr devices such as Static VAr Compensators (SVCs) and STATic COMpensators (STAT-COMs) are used. The location and size of such devices are optimized in order to improve their efficiency and reduce initial costs. In this work time domain dy-namic analysis was used to evaluate trajectory voltage sensitivities for each time step. Linear programming was then performed to determine the optimal amount of required VAr injection at each bus, using voltage sensitivities as weighting factors. Optimal VAr injection values from different operating conditions were weighted and averaged in order to obtain a final setting of the VAr requirement. Some buses under consideration were either assigned very small VAr injection values, or not assigned any value at all. Therefore, the approach used in this work was found to be useful in not only determining the optimal size of SVCs, but also their location.
ContributorsSalloum, Ahmed (Author) / Vittal, Vijay (Thesis advisor) / Heydt, Gerald (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2011
151066-Thumbnail Image.png
Description
This thesis concerns with the impact of renewable generation resources on the power system stability. The rapidly increasing integration of renewable energy sources into the grid can change the way power systems operate and respond to system disturbances. This is because the available inertia from synchronous machines, which helps in

This thesis concerns with the impact of renewable generation resources on the power system stability. The rapidly increasing integration of renewable energy sources into the grid can change the way power systems operate and respond to system disturbances. This is because the available inertia from synchronous machines, which helps in damping system oscillations, gets reduced as an increase in renewables like wind and solar photovoltaics is accompanied by a decrease in conventional generators. This aspect of high penetration of renewables has the potential to affect the rotor angle stability and small signal stability of power systems. The system with increased renewables is mathematically modeled to rep-resent wind and solar resources. Transient and small signal stability studies are performed for various operating cases. The main conclusion drawn from the different studies is that increased renewable penetration causes a few instability problems, most of which are either localized and do not adversely affect the over-all system stability. It is also found that the critical inter-area modes of oscillations are sufficiently damped.
ContributorsSingh, Iknoor (Author) / Vittal, Vijay (Thesis advisor) / Ayyanar, Raja (Committee member) / Hedman, Kory (Committee member) / Arizona State University (Publisher)
Created2012
150856-Thumbnail Image.png
Description
Voltage stability is always a major concern in power system operation. Recently Fault Induced Delayed Voltage Recovery (FIDVR) has gained increased attention. It is widely believed that the motor-driven loads of high efficiency, low inertia air conditioners are one of the main causes of FIDVR events. Simulation tools that assist

Voltage stability is always a major concern in power system operation. Recently Fault Induced Delayed Voltage Recovery (FIDVR) has gained increased attention. It is widely believed that the motor-driven loads of high efficiency, low inertia air conditioners are one of the main causes of FIDVR events. Simulation tools that assist power system operation and planning have been found insufficient to reproduce FIDVR events. This is because of their inaccurate load modeling of single-phase motor loads. Conventionally three-phase motor models have been used to represent the aggregation effect of single-phase motor load. However researchers have found that this modeling method is far from an accurate representation of single-phase induction motors. In this work a simulation method is proposed to study the precise influence of single-phase motor load in context of FIDVR. The load, as seen the transmission bus, is replaced with a detailed distribution system. Each single-phase motor in the distribution system is represented by an equipment-level model for best accuracy. This is to enable the simulation to capture stalling effects of air conditioner compressor motors as they are related to FIDVR events. The single phase motor models are compared against the traditional three phase aggregate approximation. Also different percentages of single-phase motor load are compared and analyzed. Simulation result shows that proposed method is able to reproduce FIDVR events. This method also provides a reasonable estimation of the power system voltage stability under the contingencies.
ContributorsMa, Yan (Author) / Karady, George G. (Thesis advisor) / Vittal, Vijay (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2012
151214-Thumbnail Image.png
Description
In electric power systems, phasor measurement units (PMUs) are capable of providing synchronized voltage and current phasor measurements which are superior to conventional measurements collected by the supervisory control and data acquisition (SCADA) system in terms of resolution and accuracy. These measurements are known as synchrophasor measurements. Considerable research work

In electric power systems, phasor measurement units (PMUs) are capable of providing synchronized voltage and current phasor measurements which are superior to conventional measurements collected by the supervisory control and data acquisition (SCADA) system in terms of resolution and accuracy. These measurements are known as synchrophasor measurements. Considerable research work has been done on the applications of PMU measurements based on the as-sumption that a high level of accuracy is obtained in the field. The study in this dissertation is conducted to address the basic issue concerning the accuracy of actual PMU measurements in the field. Synchronization is one of the important features of PMU measurements. However, the study presented in this dissertation reveals that the problem of faulty synchronization between measurements with the same time stamps from different PMUs exists. A Kalman filter model is proposed to analyze and calcu-late the time skew error caused by faulty synchronization. In order to achieve a high level of accuracy of PMU measurements, inno-vative methods are proposed to detect and identify system state changes or bad data which are reflected by changes in the measurements. This procedure is ap-plied as a key step in adaptive Kalman filtering of PMU measurements to over-come the insensitivity of a conventional Kalman filter. Calibration of PMU measurements is implemented in specific PMU instal-lation scenarios using transmission line (TL) parameters from operation planning data. The voltage and current correction factors calculated from the calibration procedure indicate the possible errors in PMU measurements. Correction factors can be applied in on-line calibration of PMU measurements. A study is conducted to address an important issue when integrating PMU measurements into state estimation. The reporting rate of PMU measurements is much higher than that of the measurements collected by the SCADA. The ques-tion of how to buffer PMU measurements is raised. The impact of PMU meas-urement buffer length on state estimation is discussed. A method based on hy-pothesis testing is proposed to determine the optimal buffer length of PMU meas-urements considering the two conflicting features of PMU measurements, i. e. un-certainty and variability. Results are presented for actual PMU synchrophasor measurements.
ContributorsZhang, Qing (Author) / Heydt, Gerald (Thesis advisor) / Vittal, Vijay (Thesis advisor) / Ayyanar, Raja (Committee member) / Si, Jennie (Committee member) / Arizona State University (Publisher)
Created2012
151224-Thumbnail Image.png
Description
Electric power systems are facing great challenges from environmental regulations, changes in demand due to new technologies like electric vehicle, as well as the integration of various renewable energy sources. These factors taken together require the development of new tools to help make policy and investment decisions for the future

Electric power systems are facing great challenges from environmental regulations, changes in demand due to new technologies like electric vehicle, as well as the integration of various renewable energy sources. These factors taken together require the development of new tools to help make policy and investment decisions for the future power grid. The requirements of a network equivalent to be used in such planning tools are very different from those assumed in the development of traditional equivalencing procedures. This dissertation is focused on the development, implementation and verification of two network equivalencing approaches on large power systems, such as the Eastern Interconnection. Traditional Ward-type equivalences are a class of equivalencing approaches but this class has some significant drawbacks. It is well known that Ward-type equivalents "smear" the injections of external generators over a large number of boundary buses. For newer long-term investment applications that take into account such things as greenhouse gas (GHG) regulations and generator availability, it is computationally impractical to model fractions of generators located at many buses. A modified-Ward equivalent is proposed to address this limitation such that the external generators are moved wholesale to some internal buses based on electrical distance. This proposed equivalencing procedure is designed so that the retained-line power flows in the equivalent match those in the unreduced (full) model exactly. During the reduction process, accommodations for special system elements are addressed, including static VAr compensators (SVCs), high voltage dc (HVDC) transmission lines, and phase angle regulators. Another network equivalencing approach based on the dc power flow assumptions and the power transfer distribution factors (PTDFs) is proposed. This method, rather than eliminate buses via Gauss-reduction, aggregates buses on a zonal basis. The bus aggregation approach proposed here is superior to the existing bus aggregation methods in that a) under the base case, the equivalent-system inter-zonal power flows exactly match those calculated using the full-network-model b) as the operating conditions change, errors in line flows are reduced using the proposed bus clustering algorithm c) this method is computationally more efficient than other bus aggregation methods proposed heretofore. A critical step in achieving accuracy with a bus aggregation approach is selecting which buses to cluster together and how many clusters are needed. Clustering in this context refers to the process of partitioning a network into subsets of buses. An efficient network clustering method is proposed based on the PTDFs and the data mining techniques. This method is applied to the EI topology using the "Saguaro" supercomputer at ASU, a resource with sufficient memory and computational capability for handling this 60,000-bus and 80,000-branch system. The network equivalents generated by the proposed approaches are verified and tested for different operating conditions and promising results have been observed.
ContributorsShi, Di (Author) / Tylavsky, Daniel J (Thesis advisor) / Vittal, Vijay (Committee member) / Hedman, Kory (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2012
153603-Thumbnail Image.png
Description
Corrective transmission topology control schemes are an essential part of grid operations and are used to improve the reliability of the grid as well as the operational efficiency. However, topology control schemes are frequently established based on the operator's past knowledge of the system as well as other ad-hoc methods.

Corrective transmission topology control schemes are an essential part of grid operations and are used to improve the reliability of the grid as well as the operational efficiency. However, topology control schemes are frequently established based on the operator's past knowledge of the system as well as other ad-hoc methods. This research presents robust corrective topology control, which is a transmission switching methodology used for system reliability as well as to facilitate renewable integration.

This research presents three topology control (corrective transmission switching) methodologies along with the detailed formulation of robust corrective switching. The robust model can be solved off-line to suggest switching actions that can be used in a dynamic security assessment tool in real-time. The proposed robust topology control algorithm can also generate multiple corrective switching actions for a particular contingency. The solution obtained from the robust topology control algorithm is guaranteed to be feasible for the entire uncertainty set, i.e., a range of system operating states.

Furthermore, this research extends the benefits of robust corrective topology control to renewable resource integration. In recent years, the penetration of renewable resources in electrical power systems has increased. These renewable resources add more complexities to power system operations, due to their intermittent nature. This research presents robust corrective topology control as a congestion management tool to manage power flows and the associated renewable uncertainty. The proposed day-ahead method determines the maximum uncertainty in renewable resources in terms of do-not-exceed limits combined with corrective topology control. The results obtained from the topology control algorithm are tested for system stability and AC feasibility.

The scalability of do-not-exceed limits problem, from a smaller test case to a realistic test case, is also addressed in this research. The do-not-exceed limit problem is simplified by proposing a zonal do-not-exceed limit formulation over a detailed nodal do-not-exceed limit formulation. The simulation results show that the zonal approach is capable of addressing scalability of the do-not-exceed limit problem for a realistic test case.
ContributorsKorad, Akshay Shashikumar (Author) / Hedman, Kory W (Thesis advisor) / Ayyanar, Raja (Committee member) / Vittal, Vijay (Committee member) / Zhang, Muhong (Committee member) / Arizona State University (Publisher)
Created2015
154530-Thumbnail Image.png
Description
The standard optimal power flow (OPF) problem is an economic dispatch (ED) problem combined with transmission constraints, which are based on a static topology. However, topology control (TC) has been proposed in the past as a corrective mechanism to relieve overloads and voltage violations. Even though the benefits of TC

The standard optimal power flow (OPF) problem is an economic dispatch (ED) problem combined with transmission constraints, which are based on a static topology. However, topology control (TC) has been proposed in the past as a corrective mechanism to relieve overloads and voltage violations. Even though the benefits of TC are presented by several research works in the past, the computational complexity associated with TC has been a major deterrent to its implementation. The proposed work develops heuristics for TC and investigates its potential to improve the computational time for TC for various applications. The objective is to develop computationally light methods to harness the flexibility of the grid to derive maximum benefits to the system in terms of reliability. One of the goals of this research is to develop a tool that will be capable of providing TC actions in a minimal time-frame, which can be readily adopted by the industry for real-time corrective applications.

A DC based heuristic, i.e., a greedy algorithm, is developed and applied to improve the computational time for the TC problem while still maintaining the ability to find quality solutions. In the greedy algorithm, an expression is derived, which indicates the impact on the objective for a marginal change in the state of a transmission line. This expression is used to generate a priority list with potential candidate lines for switching, which may provide huge improvements to the system. The advantage of this method is that it is a fast heuristic as compared to using mixed integer programming (MIP) approach.

Alternatively, AC based heuristics are developed for TC problem and tested on actual data from PJM, ERCOT and TVA. AC based N-1 contingency analysis is performed to identify the contingencies that cause network violations. Simple proximity based heuristics are developed and the fast decoupled power flow is solved iteratively to identify the top five TC actions, which provide reduction in violations. Time domain simulations are performed to ensure that the TC actions do not cause system instability. Simulation results show significant reductions in violations in the system by the application of the TC heuristics.
ContributorsBalasubramanian, Pranavamoorthy (Author) / Hedman, Kory W (Thesis advisor) / Vittal, Vijay (Committee member) / Ayyanar, Raja (Committee member) / Sankar, Lalitha (Committee member) / Arizona State University (Publisher)
Created2016
154542-Thumbnail Image.png
Description
Two significant trends of recent power system evolution are: (1) increasing installa-tion of dynamic loads and distributed generation resources in distribution systems; (2) large-scale renewable energy integration at the transmission system level. A majority of these devices interface with power systems through power electronic converters. However, existing transient stability (TS)

Two significant trends of recent power system evolution are: (1) increasing installa-tion of dynamic loads and distributed generation resources in distribution systems; (2) large-scale renewable energy integration at the transmission system level. A majority of these devices interface with power systems through power electronic converters. However, existing transient stability (TS) simulators are inadequate to represent the dynamic behavior of these devices accurately. On the other hand, simulating a large system using an electromagnetic transient (EMT) simulator is computationally impractical. EMT-TS hybrid simulation approach is an alternative to address these challenges. Furthermore, to thoroughly analyze the increased interactions among the transmission and distribution systems, an integrated modeling and simulation approach is essential.

The thesis is divided into three parts. The first part focuses on an improved hybrid simulation approach and software development. Compared to the previous work, the pro-posed approach has three salient features: three-sequence TS simulation algorithm, three-phase/three-sequence network equivalencing and flexible switching of the serial and par-allel interaction protocols.

The second part of the thesis concentrates on the applications of the hybrid simula-tion tool. The developed platform is first applied to conduct a detailed fault-induced de-layed voltage recovery (FIDVR) study on the Western Electricity Coordinating Council (WECC) system. This study uncovers that after a normally cleared single line to ground fault at the transmission system could cause air conditioner motors to stall in the distribu-tion systems, and the motor stalling could further propagate to an unfaulted phase under certain conditions. The developed tool is also applied to simulate power systems inter-faced with HVDC systems, including classical HVDC and the new generation voltage source converter (VSC)-HVDC system.

The third part centers on the development of integrated transmission and distribution system simulation and an advanced hybrid simulation algorithm with a capability of switching from hybrid simulation mode to TS simulation. Firstly, a modeling framework suitable for integrated transmission and distribution systems is proposed. Secondly, a power flow algorithm and a diakoptics based dynamic simulation algorithm for the integrated transmission and distribution system are developed. Lastly, the EMT-TS hybrid simulation algorithm is combined with the diakoptics based dynamic simulation algorithm to realize flexible simulation mode switching to increase the simulation efficiency.
ContributorsHuang, Qiuhua (Author) / Vittal, Vijay (Thesis advisor) / Undrill, John M. (Committee member) / Heydt, Gerald T. (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2016