Matching Items (46)

149775-Thumbnail Image.png

Redeveloping stormwater management in Maricopa County, Arizona: exploring the establishment of a regional authority

Description

The current practice of municipal stormwater management in the United States has failed to effectively reduce the amount of pollutants discharged into surface waters. Water impairment as a result of polluted stormwater runoff from urbanized areas remains a significant concern

The current practice of municipal stormwater management in the United States has failed to effectively reduce the amount of pollutants discharged into surface waters. Water impairment as a result of polluted stormwater runoff from urbanized areas remains a significant concern despite federally mandated efforts to reduce the impact of these discharges. To begin addressing these shortfalls the Environmental Protection Agency contracted the National Research Council to investigate the extent of the stormwater program and to identify areas that require improvement in order to more effectively implement the program. Their findings indicated widespread, foundational flaws with the stormwater regulatory structure and proposed new permitting guidelines. The purpose of this study was to explore the specific shortcomings of stormwater management in the Maricopa County region and to suggest the establishment of a regional authority. Doing so would require an alternative permitting regime to replace the current approach of population based municipal permitting with a permit that considered the entire urbanized region. The organizational structure, legality concerns and intergovernmental partnerships needed to properly establish such a regional authority were part of this study. The effect of this approach suggested a more effective, efficient and economical model of municipal stormwater management that better addressed certain Integrated Urban Stormwater Management strategies and began to address the program weaknesses identified by the National Research Council.

Contributors

Agent

Created

Date Created
2011

149127-Thumbnail Image.png

Beyond Conjecture: Learning About Ecosystem Management From the Glen Canyon Dam Experiment

Description

This brief article, written for a symposium on "Collaboration and the Colorado River," evaluates the U.S. Department of the Interior's Glen Canyon Dam Adaptive Management Program ("AMP"). The AMP has been advanced as a pioneering collaborative and adaptive approach for

This brief article, written for a symposium on "Collaboration and the Colorado River," evaluates the U.S. Department of the Interior's Glen Canyon Dam Adaptive Management Program ("AMP"). The AMP has been advanced as a pioneering collaborative and adaptive approach for both decreasing scientific uncertainty in support of regulatory decision-making and helping manage contentious resource disputes -- in this case, the increasingly thorny conflict over the Colorado River's finite natural resources. Though encouraging in some respects, the AMP serves as a valuable illustration of the flaws of existing regulatory processes purporting to incorporate collaboration and regulatory adaptation into the decision-making process. Born in the shadow of the law and improvised with too little thought as to its structure, the AMP demonstrates the need to attend to the design of the regulatory process and integrate mechanisms that compel systematic program evaluation and adaptation. As such, the AMP provides vital information on how future collaborative experiments might be modified to enhance their prospects of success.

Contributors

Agent

Created

Date Created
2008-09-19

149706-Thumbnail Image.png

Government incentives and how they encourage manufacturing facilities to adopt environmental management systems: a look at the efficiency of policy tools

Description

Traditional methods of environmental regulation and enforcement have been questioned over the last decade. Due to the number of environmental regulations, and subsequent cost of enforcement, governments have begun to incentivize the adoption of environmental management systems (EMSs). These

Traditional methods of environmental regulation and enforcement have been questioned over the last decade. Due to the number of environmental regulations, and subsequent cost of enforcement, governments have begun to incentivize the adoption of environmental management systems (EMSs). These management systems encourage companies to better manage their environmental performance voluntarily. It is the purpose of this study to list the types of government incentives that have been used and categorize them into three groups based off of their characteristics. Ten incentive types were identified and put into three categories; (a) reducing the barriers to EMS adoption; (b) enhancing benefits derived from EMS adoption, and (c) rewarding EMS implementers with reduced enforcement. The research shows that each category of incentives encourages different manufacturing facilities to adopt EMSs. Using data from previously conducted case studies and surveys to determine what type of manufacturing facilities are affected, this study finds that government incentives have been shown to have a measurable impact on the decision makers of manufacturing facilities to adopt an EMS. The study concludes that a combination of traditional environmental regulation used with targeted incentives provide the most efficient use of resources by governments.

Contributors

Agent

Created

Date Created
2011

149765-Thumbnail Image.png

Fabrication and evaluation of hematite modified granular activated carbon (GAC) media for arsenic removal from groundwater

Description

The goal of the study was twofold: (i) to investigate the synthesis of hematite-impregnated granular activated carbon (Fe-GAC) by hydrolysis of Fe (III) and (ii) to assess the effectiveness of the fabricated media in removal of arsenic from water. Fe-GAC

The goal of the study was twofold: (i) to investigate the synthesis of hematite-impregnated granular activated carbon (Fe-GAC) by hydrolysis of Fe (III) and (ii) to assess the effectiveness of the fabricated media in removal of arsenic from water. Fe-GAC was synthesized by hydrolysis of Fe(III) salts under two Fe (III) initial dosages (0.5M and 2M) and two hydrolysis periods (24 hrs and 72 hrs). The iron content of the fabricated Fe-GAC media ranged from 0.9% to 4.4% Fe/g of the dry media. Pseudo-equilibrium batch test data at pH = 7.7±0.2 in 1mM NaHCO3 buffered ultrapure water and challenge groundwater representative of the Arizona Mexico border region were fitted to a Freundlich isotherm model. The findings suggested that the arsenic adsorption capacity of the metal (hydr)oxide modified GAC media is primarily controlled by the surface area of the media, while the metal content exhibited lesser effect. The adsorption capacity of the media in the model Mexican groundwater matrix was significantly lower for all adsorbent media. Continuous flow short bed adsorber tests (SBA) demonstrated that the adsorption capacity for arsenic in the challenge groundwater was reduced by a factor of 3 to 4 as a result of the mass transport effects. When compared on metal basis, the iron (hydr)oxide modified media performed comparably well as existing commercial media for treatment of arsenic. On dry mass basis, the fabricated media in this study removed less arsenic than their commercial counterparts because the metal content of the commercial media was significantly higher.

Contributors

Agent

Created

Date Created
2011

152255-Thumbnail Image.png

Contaminants of emerging concern in U.S. sewage sludges and forecasting of associated ecological and human health risks using sewage epidemiology approaches

Description

Many manmade chemicals used in consumer products are ultimately washed down the drain and are collected in municipal sewers. Efficient chemical monitoring at wastewater treatment (WWT) plants thus may provide up-to-date information on chemical usage rates for epidemiological assessments. The

Many manmade chemicals used in consumer products are ultimately washed down the drain and are collected in municipal sewers. Efficient chemical monitoring at wastewater treatment (WWT) plants thus may provide up-to-date information on chemical usage rates for epidemiological assessments. The objective of the present study was to extrapolate this concept, termed 'sewage epidemiology', to include municipal sewage sludge (MSS) in identifying and prioritizing contaminants of emerging concern (CECs). To test this the following specific aims were defined: i) to screen and identify CECs in nationally representative samples of MSS and to provide nationwide inventories of CECs in U.S. MSS; ii) to investigate the fate and persistence in MSS-amended soils, of sludge-borne hydrophobic CECs; and iii) to develop an analytical tool relying on contaminant levels in MSS as an indicator for identifying and prioritizing hydrophobic CECs. Chemicals that are primarily discharged to the sewage systems (alkylphenol surfactants) and widespread persistent organohalogen pollutants (perfluorochemicals and brominated flame retardants) were analyzed in nationally representative MSS samples. A meta-analysis showed that CECs contribute about 0.04-0.15% to the total dry mass of MSS, a mass equivalent of 2,700-7,900 metric tonnes of chemicals annually. An analysis of archived mesocoms from a sludge weathering study showed that 64 CECs persisted in MSS/soil mixtures over the course of the experiment, with half-lives ranging between 224 and >990 days; these results suggest an inherent persistence of CECs that accumulate in MSS. A comparison of the spectrum of chemicals (n=52) analyzed in nationally representative biological specimens from humans and MSS revealed 70% overlap. This observed co-occurrence of contaminants in both matrices suggests that MSS may serve as an indicator for ongoing human exposures and body burdens of pollutants in humans. In conclusion, I posit that this novel approach in sewage epidemiology may serve to pre-screen and prioritize the several thousands of known or suspected CECs to identify those that are most prone to pose a risk to human health and the environment.

Contributors

Agent

Created

Date Created
2013

152293-Thumbnail Image.png

A spatial decision support system for optimizing the environmental rehabilitation of borderlands

Description

The border policies of the United States and Mexico that have evolved over the previous decades have pushed illegal immigration and drug smuggling to remote and often public lands. Valuable natural resources and tourist sites suffer an inordinate level of

The border policies of the United States and Mexico that have evolved over the previous decades have pushed illegal immigration and drug smuggling to remote and often public lands. Valuable natural resources and tourist sites suffer an inordinate level of environmental impacts as a result of activities, from new roads and trash to cut fence lines and abandoned vehicles. Public land managers struggle to characterize impacts and plan for effective landscape level rehabilitation projects that are the most cost effective and environmentally beneficial for a region given resource limitations. A decision support tool is developed to facilitate public land management: Borderlands Environmental Rehabilitation Spatial Decision Support System (BERSDSS). The utility of the system is demonstrated using a case study of the Sonoran Desert National Monument, Arizona.

Contributors

Agent

Created

Date Created
2013

152305-Thumbnail Image.png

Urban development and sustainable water management of southwest cities

Description

Water is the defining issue in determining the development and growth of human populations of the Southwest. The cities of Las Vegas, Phoenix, Tucson, Albuquerque, and El Paso have experienced rapid and exponential growth over the past 50 years. The

Water is the defining issue in determining the development and growth of human populations of the Southwest. The cities of Las Vegas, Phoenix, Tucson, Albuquerque, and El Paso have experienced rapid and exponential growth over the past 50 years. The outlook for having access to sustainable sources of water to support this growth is not promising due to water demand and supply deficits. Regional water projects have harnessed the Colorado and Rio Grande rivers to maximize the utility of the water for human consumption and environmental laws have been adopted to regulate the beneficial use of this water, but it still is not enough to create sustainable future for rapidly growing southwest cities. Future growth in these cities will depend on finding new sources of water and creative measures to maximize the utility of existing water resources. The challenge for southwest cities is to establish policies, procedures, and projects that maximizes the use of water and promotes conservation from all areas of municipal users. All cities are faced with the same challenges, but have different options for how they prioritize their water resources. The principal means of sustainable water management include recovery, recharge, reuse, and increasing the efficiency of water delivery. Other strategies that have been adopted include harvesting of rainwater, building codes that promote efficient water use, tiered water rates, turf removal programs, residential water auditing, and native plant promotion. Creating a sustainable future for the southwest will best be achieved by cities that adopt an integrated approach to managing their water resources including discouraging discretionary uses of water, adoption of building and construction codes for master plans, industrial plants, and residential construction. Additionally, a robust plan for education of the public is essential to create a culture of conservation from a very young age.

Contributors

Agent

Created

Date Created
2013

151928-Thumbnail Image.png

Socio-ecological drivers and consequences of land fragmentation under conditions of rapid urbanization

Description

Land transformation under conditions of rapid urbanization has significantly altered the structure and functioning of Earth's systems. Land fragmentation, a characteristic of land transformation, is recognized as a primary driving force in the loss of biological diversity worldwide. However, little

Land transformation under conditions of rapid urbanization has significantly altered the structure and functioning of Earth's systems. Land fragmentation, a characteristic of land transformation, is recognized as a primary driving force in the loss of biological diversity worldwide. However, little is known about its implications in complex urban settings where interaction with social dynamics is intense. This research asks: How do patterns of land cover and land fragmentation vary over time and space, and what are the socio-ecological drivers and consequences of land transformation in a rapidly growing city? Using Metropolitan Phoenix as a case study, the research links pattern and process relationships between land cover, land fragmentation, and socio-ecological systems in the region. It examines population growth, water provision and institutions as major drivers of land transformation, and the changes in bird biodiversity that result from land transformation. How to manage socio-ecological systems is one of the biggest challenges of moving towards sustainability. This research project provides a deeper understanding of how land transformation affects socio-ecological dynamics in an urban setting. It uses a series of indices to evaluate land cover and fragmentation patterns over the past twenty years, including land patch numbers, contagion, shapes, and diversities. It then generates empirical evidence on the linkages between land cover patterns and ecosystem properties by exploring the drivers and impacts of land cover change. An interdisciplinary approach that integrates social, ecological, and spatial analysis is applied in this research. Findings of the research provide a documented dataset that can help researchers study the relationship between human activities and biotic processes in an urban setting, and contribute to sustainable urban development.

Contributors

Agent

Created

Date Created
2013

152091-Thumbnail Image.png

The influence of soil characteristics on Saguaro (Carnegiea gigantea) post wild fire restoration efforts

Description

The Cave Creek Complex fires of June and July of 2005 north of Phoenix, Arizona, U.S.A. burned 248,310 acres of Sonoran desert, primarily on the Tonto National Forest, USFS. The fires consumed multiple stands of the keystone species Carnegiea gigantea,

The Cave Creek Complex fires of June and July of 2005 north of Phoenix, Arizona, U.S.A. burned 248,310 acres of Sonoran desert, primarily on the Tonto National Forest, USFS. The fires consumed multiple stands of the keystone species Carnegiea gigantea, the saguaro cactus. Restoration efforts in late spring 2007 involved the monitoring of 200 transplanted saguaro cacti over a two year period for overall establishment and success. Observation of local saguaro distribution suggests that soil factors might influence saguaro growth. Therefore, soil samples were collected from each transplant location and analyzed for percentage coarse fragments, texture, pH and electrical conductivity as soil collection and analysis of these variables are relatively inexpensive and expedient. Regression analysis was used to determine which, if any of these soil characteristics significantly correlated with plant growth. The results of this study found significant correlation between saguaro transplant growth and the soil variables of clay content and pH, but no correlation between saguaro growth and coarse fragment percentages or electrical conductivity.

Contributors

Agent

Created

Date Created
2013

151895-Thumbnail Image.png

LEED certification: gold standard or gold star

Description

Since its launch by the US Green Building Council (USGBC), Leadership in Energy and Environmental Design (LEED) certification has been postured as the "gold standard" for environmentally conscious, sustainable building design, construction and operations. However, as a "living measurement", one

Since its launch by the US Green Building Council (USGBC), Leadership in Energy and Environmental Design (LEED) certification has been postured as the "gold standard" for environmentally conscious, sustainable building design, construction and operations. However, as a "living measurement", one which requires ongoing evaluation and reporting of attainment and compliance with LEED certification requirements, there is none. Once awarded, LEED certification does not have a required reporting component to effectively track continued adherence to LEED standards. In addition, there is no expiry tied to the certification; once obtained, a LEED certification rating is presumed to be a valid representation of project certification status. Therefore, LEED lacks a requirement to demonstrate environmental impact of construction materials and building systems over the entire life of the project. Consequently, LEED certification is merely a label rather than a true representation of ongoing adherence to program performance requirements over time. Without continued monitoring and reporting of building design and construction features, and in the absence of recertification requirements, LEED is, in reality, a gold star rather than a gold standard. This thesis examines the lack of required ongoing monitoring, reporting, or recertification requirements following the award by the USGBC of LEED certification; compares LEED with other international programs which do have ongoing reporting or recertification requirements; demonstrates the need and benefit of ongoing reporting or recertification requirements; and explores possible methods for implementation of mandatory reporting requirements within the program.

Contributors

Agent

Created

Date Created
2013