Matching Items (2)

Filtering by

Clear all filters

Does School Participatory Budgeting Increase Students’ Political Efficacy? Bandura’s “Sources,” Civic Pedagogy, and Education for Democracy

Does School Participatory Budgeting Increase Students’ Political Efficacy? Bandura’s “Sources,” Civic Pedagogy, and Education for Democracy

Description

Does school participatory budgeting (SPB) increase students’ political efficacy? SPB, which is implemented in thousands of schools around the world, is a democratic process of deliberation and decision-making in which students determine how to spend a portion of the school’s

Does school participatory budgeting (SPB) increase students’ political efficacy? SPB, which is implemented in thousands of schools around the world, is a democratic process of deliberation and decision-making in which students determine how to spend a portion of the school’s budget. We examined the impact of SPB on political efficacy in one middle school in Arizona. Our participants’ (n = 28) responses on survey items designed to measure self-perceived growth in political efficacy indicated a large effect size (Cohen’s d = 1.46), suggesting that SPB is an effective approach to civic pedagogy, with promising prospects for developing students’ political efficacy.

Contributors

Agent

Created

Date Created
2021-05-01

162284-Thumbnail Image.png

Evaluating artificial social intelligence in an urban search and rescue task environment

Description

Human team members show a remarkable ability to infer the state of their partners and anticipate their needs and actions. Prior research demonstrates that an artificial system can make some predictions accurately concerning artificial agents. This study investigated whether an

Human team members show a remarkable ability to infer the state of their partners and anticipate their needs and actions. Prior research demonstrates that an artificial system can make some predictions accurately concerning artificial agents. This study investigated whether an artificial system could generate a robust Theory of Mind of human teammates. An urban search and rescue (USAR) task environment was developed to elicit human teamwork and evaluate inference and prediction about team members by software agents and humans. The task varied team members’ roles and skills, types of task synchronization and interdependence, task risk and reward, completeness of mission planning, and information asymmetry. The task was implemented in MinecraftTM and applied in a study of 64 teams, each with three remotely distributed members. An evaluation of six Artificial Social Intelligences (ASI) and several human observers addressed the accuracy with which each predicted team performance, inferred experimentally manipulated knowledge of team members, and predicted member actions. All agents performed above chance; humans slightly outperformed ASI agents on some tasks and significantly outperformed ASI agents on others; no one ASI agent reliably outperformed the others; and the accuracy of ASI agents and human observers improved rapidly though modestly during the brief trials.

Contributors

Agent

Created

Date Created
2021-11-04