Matching Items (5)

148466-Thumbnail Image.png

Two Stimuli of Hyperphagia: High Fat Diet and Weight Regain

Description

As obesity continues to grow across the world, better understanding of the disease, treatments, and outcomes becomes increasingly important. Animal models used to study these aspects of obesity have 3

As obesity continues to grow across the world, better understanding of the disease, treatments, and outcomes becomes increasingly important. Animal models used to study these aspects of obesity have 3 phases: experimental (EXP), caloric restriction (CR), and weight regain (WR). For this study an ad libitum high-fat diet (HFD) was used to induce hyperphagia and weight gain in Sprague-Dawley rats in the experimental period. Rats then transitioned to a chow (CH) diet and energy intake (EI; kcal/day) was reduced 40-60% during the caloric restriction period. In weight regain, rats were given chow ad libitum. This protocol was run 3 times, once every academic school year (2017-2018, 2018-2019, and 2019-2020). Sample sizes listed in the order of high fat (HF) rats then chow (CH) rats for each year were as follows: 2017-2018 (n=11, n=8), 2018-2019 (n=12, n=8), 2019-2020 (n=14, n=10). Analysis of energy intake was performed on the first week of the experimental phase and the first week of the weight regain phase. <br/><br/>HF EXP rats showed hyperphagic average daily EIs compared to CH EXP rats for all 3 years (p<0.01-0.0001). HF WR rats were similar to CH WR rats in all applicable years in terms of average daily EI. However, both HF WR and CH WR rats were hyperphagic. HFD caused hyperphagia to be highest at the beginning of the first week of EXP and then EI decreased significantly as days went by. However, in WR, hyperphagia (HF WR and CH WR) was flat throughout the week. Obesity prone (OP) rats during EXP had similar EI behavior to obesity resistant (OR) rats during EXP within the same year. During WR though, OP rats had significantly greater average daily EI (p<0.05-0.001) compared to WR OR rats within the same year for 2 out of the 3 years. <br/><br/>These results suggest that HFD induces hyperphagia during weight gain. In weight regain, where HFD is absent, HF rats and CH rats are both hyperphagic. This suggests that WR induces hyperphagia in both rat groups. WR also induces a greater increase in EI for OP rats compared to OR rats. Therefore, hyperphagia seems to be driven by 2 mechanisms (HFD and WR). The profiles of the responses are different however. HFD induces hyperphagia that decreases over the first week and the level of hyperphagia is similar between OP and OR rats. WR induces hyperphagia that remains stable in the first week and is more pronounced in OP rats compared to OR rats.

Contributors

Agent

Created

Date Created
  • 2021-05

158091-Thumbnail Image.png

Evaluation of an Organic Mineral Complex on the Development of Cardiovascular Disease Risk Following a 10-week High-Fat Diet

Description

According to the World Health Organization, obesity has nearly tripled since 1975 and forty-one million children under the age of 5 are overweight or obese (World Health Organization, 2018). Exercise

According to the World Health Organization, obesity has nearly tripled since 1975 and forty-one million children under the age of 5 are overweight or obese (World Health Organization, 2018). Exercise is a potential intervention to prevent obesity-induced cardiovascular complications as exercise training has been shown to aid nitric oxide (NO) production as well as preserving endothelial function in obese mice (Silva et al., 2016). A soil-derived organic mineral compound (OMC) has been shown to lower blood sugar in diabetic mice (Deneau et al., 2011). Prior research has shown that, while OMC did not prevent high fat diet (HFD)-induced increases in body fat in male Sprague-Dawley rats, it was effective at preventing HFD-induced impaired vasodilation (M. S. Crawford et al., 2019). Six-weeks of HFD has been shown to impair vasodilation through oxidative-stress mediated scavenging of NO as well as upregulation of inflammatory pathways including inducible nitric oxide synthase (iNOS) and cyclooxygenase (Karen L. Sweazea et al., 2010). Therefore, the aim of the present study was to determine whether OMC alters protein expression of iNOS and endothelial NOS (eNOS) in the vasculature of rats fed a control or HFD with and without OMC supplementation. Six-week old male Sprague-Dawley rats were fed either a standard chow diet (CHOW) or a HFD composed of 60% kcal from fat for 10 weeks. The rats were administered OMC at doses of 0 mg/mL (control), 0.6 mg/mL, or 3.0 mg/mL added to their drinking water. Following euthanasia with sodium pentobarbital (200 mg/kg, i.p.), mesenteric arteries and the surrounding perivascular adipose tissue were isolated and prepared for Western Blot analyses. Mesenteric arteries from HFD rats had more uncoupled eNOS (p = 0.006) and iNOS protein expression (p = 0.027) than rats fed the control diet. OMC was not effective at preventing the uncoupling of eNOS or increase in iNOS induced by HFD. Perivascular adipose tissue (PVAT) showed no significant difference in iNOS protein expression between diet or OMC treatment groups. These findings suggest that OMC is not likely working through the iNOS or eNOS pathways to improve vasodilation in these rats, but rather, appears to be working through another mechanism.

Contributors

Agent

Created

Date Created
  • 2020

156509-Thumbnail Image.png

Oxidative stress and a high fat diet in rats : an intervention study on the effects of an organometallic compound on enzyme function, inflammatory markers, endotoxins and fasting serum glucose and insulin levels

Description

Cardiovascular disease has reached epidemic proportions resulting in its ranking as the number one cause of mortality in the Western world. A key player in the pathophysiology of vascular disease

Cardiovascular disease has reached epidemic proportions resulting in its ranking as the number one cause of mortality in the Western world. A key player in the pathophysiology of vascular disease is oxidative stress due to free radical accumulation. This intervention study was conducted to evaluate any potential mediation of oxidative stress using a soil-derived organometallic compound (OMC) with suspected antioxidant properties. A 10-week study was conducted in male Sprague-Dawley rats (n = 42) fed either a high-fat diet (HFD) consisting of 60% kcal from fat or a standard Chow diet containing only 6% kcals from fat. Rats from each diet group were then subdivided into 3 subgroups (n = 6-10 each) that received 0.0 mg/mL, 0.6 mg/mL or 3.0 mg/mL OMC. Neither the diet nor OMC significantly changed protein expression of inducible nitric oxide synthase (iNOS) in isolated aortas. Plasma levels of the inflammatory marker, tumor necrosis factor alpha (TNFα) were below detection after the 10-week trial. Superoxide dismutase (SOD), a scavenger of the free radical, superoxide, was not significantly different following HFD although levels of SOD were significantly higher in Chow rats treated with 0.6 mg/mL OMC compared to HFD rats treated with the same dose (p < 0.05). Lipopolysaccharides (LPS) were significantly increased following 10 weeks of high fat intake (p < 0.05). This increase in endotoxicity was prevented by the high dose of OMC. HFD significantly increased fasting serum glucose levels at both 6 weeks (p < 0.001) and 10 weeks (p < 0.025) compared to Chow controls. The high dose of OMC significantly prevented the hyperglycemic effects of the HFD in rats at 10 weeks (p = 0.021). HFD-fed rats developed hyperinsulinemia after 10 weeks of feeding (p = 0.009), which was not prevented by OMC. The results of this study indicate that OMC may be an effective strategy to help manage diet-induced hyperglycemia and endotoxemia. However, further research is needed to determine the mechanism by which OMC helps prevent hyperglycemia as measures of inflammation (TNFα) and vascular damage (iNOS) were inconclusive.

Contributors

Agent

Created

Date Created
  • 2018

153350-Thumbnail Image.png

Effect of a short term high fat diet on kidney morphology and function

Description

Long term high fat diets (HFD) are correlated with the development of diabetes

and kidney disease. However, the impact of short term high fat intake on the etiology of kidney disease

Long term high fat diets (HFD) are correlated with the development of diabetes

and kidney disease. However, the impact of short term high fat intake on the etiology of kidney disease has not been well-studied. Therefore, this study examined the impact of a six week HFD (60% fat) on kidney structure and function in young male Sprague-Dawley rats. Previous studies have shown that these animals develop indices of diabetes compared to rats fed a standard rodent chow (5% fat) for six weeks. The hypothesis of this study is that six weeks of HFD will lead to early stages of kidney disease as evidenced by morphological and functional changes in the kidney. Alterations in morphology were determined by measuring structural changes in the kidneys (changes in mass, fatty acid infiltration, and structural damage). Alterations in kidney function were measured by analyzing urinary biomarkers of oxidative RNA/DNA damage, renal tissue lipid peroxidation, urinary markers of impaired kidney function (urinary protein, creatinine, and hydrogen peroxide (H2O2)), markers of inflammation (tumor necrosis factor alpha (TNFα) and interleukin 6 (IL-6)), as well as cystatin C, a plasma biomarker of kidney function. The results of these studies determined that short term HFD intake is not sufficient to induce early stage kidney disease. Beyond increases in renal mass, there were no significant differences between the markers of renal structure and function in the HFD and standard rodent chow-fed rats.

Contributors

Agent

Created

Date Created
  • 2015

157201-Thumbnail Image.png

Examining the effects of a high fat diet on the development of metabolic syndrome and gut leakiness in male Sprague-Dawley rats

Description

The prevalence of obesity and obesity-related disorders have increased world-wide. In the last decade, the intestinal microbiome has become a major indicator of metabolic and gastrointestinal health. Previous research has

The prevalence of obesity and obesity-related disorders have increased world-wide. In the last decade, the intestinal microbiome has become a major indicator of metabolic and gastrointestinal health. Previous research has shown that high-fat diet (HFD) consumption can alter the microbial composition of the gut by increasing the abundance of gram-positive bacteria associated with the onset of obesity and type 2 diabetes. Although, the most common form of obesity and metabolic syndrome intervention is exercise and diet, these recommendations may not improve severe cases of obesity. Thus, an important relevance of my project was to investigate whether the intake of an organometallic complex (OMC) would prevent the onset of metabolic and gastrointestinal complications associated with high-fat diet intake. I hypothesized that the consumption of a HFD for 6 weeks would promote the development of metabolic and gastrointestinal disease risk factors. Next, it was hypothesized that OMC treatment would decrease metabolic risk factors by improving insulin sensitivity and decreasing weight gain. Finally, I hypothesized that HFD-intake would increase the abundance of gram-positive bacteria associated with gastrointestinal disease. My preliminary data investigated the effects of a 6-week HFD on the development of hepatic steatosis, intestinal permeability and inflammation in male Sprague Dawley rats. I found that a 6-week HFD increases hepatic triglyceride concentrations, plasma endotoxins and promotes the production of pro-inflammatory cytokines in the cecum wall. I then investigated whether OMC treatment could prevent metabolic risk factors in male Sprague-Dawley rats fed a HFD for 10 weeks and found that OMC can mitigate risk factors such hyperglycemia, liver disease, impaired endothelial function, and inflammation. Lastly, I investigated the effects of a 10-week HFD on the gastrointestinal system and found an increase in liver triglycerides and free glycerol and alterations of the distal gut microbiome. My results support the hypothesis that a HFD can promote metabolic risk factors, alter the gut microbiome and increase systemic inflammation and that OMC treatment may help mitigate some of these effects. Together, these studies are among the first to demonstrate the effects of a soil-derived compound on metabolic complications. Additionally, these conclusions also provide an essential basis for future gastrointestinal and microbiome studies of OMC treatment.

Contributors

Agent

Created

Date Created
  • 2019