Matching Items (4)
Filtering by

Clear all filters

153458-Thumbnail Image.png
Description
Biophysical techniques have been increasingly applied toward answering biological questions with more precision. Here, three different biological systems were studied with the goal of understanding their dynamic differences, either conformational dynamics within the system or oligomerization dynamics between monomers. With Cy3 on the 5' end of DNA, the

Biophysical techniques have been increasingly applied toward answering biological questions with more precision. Here, three different biological systems were studied with the goal of understanding their dynamic differences, either conformational dynamics within the system or oligomerization dynamics between monomers. With Cy3 on the 5' end of DNA, the effects of changing the terminal base pair were explored using temperature-dependent quantum yields. It was discovered, in combination with simulations, that a terminal thymine base has the weakest stacking interactions with the Cy3 dye compared to the other three bases. With ME1 heterodimers, the goal was to see if engineering a salt bridge at the dimerization interface could allow for control over dimerization in a pH-dependent manner. This was performed experimentally by measuring FRET between monomers containing either a Dap or an Asp mutation and comparing FRET efficiency at different pHs. It was demonstrated that the heterodimeric salt bridge would only form in a pH range near neutrality. Finally, with DNA processivity clamps, one aim was to compare the equilibrium dissociation constants, kinetic rate constants, and lifetimes of the closed rings for beta clamp and PCNA. This was done using a variety of biophysical techniques but with three as the main focus: fluorescence correlation spectroscopy, single-molecule experiments, and time-correlated single photon counting measurements. The stability of beta clamp was found to be three orders of magnitude higher when measuring solution stability but only one order of magnitude higher when measuring intrinsic stability, which is a result of salt bridge interactions in the interface of beta clamp. Ongoing work built upon the findings from this project by attempting to disrupt interface stability of different beta clamp mutants by adding salt or changing the pH of the solution. Lingering questions about the dynamics of different areas of the clamps has led to another project for which we have developed a control to demystify some unexpected similarities between beta clamp mutants. With that project, we show that single-labeled and double-labeled samples have similar autocorrelation decays in florescence correlation spectroscopy, allowing us to rule out the dyes themselves as causing fluctuations in the 10-100 microsecond timescale.
ContributorsBinder, Jennifer (Author) / Levitus, Marcia (Thesis advisor) / Wachter, Rebekka (Committee member) / Ros, Robert (Committee member) / Arizona State University (Publisher)
Created2015
156739-Thumbnail Image.png
Description
Rubisco activase (Rca) from higher plants is a stromal ATPase essential for reactivating Rubiscos rendered catalytically inactive by endogenous inhibitors. Rca’s functional state is thought to consist of ring-like hexameric assemblies, similar to other members of the AAA+ protein superfamily. However, unlike other members, it does not form obligate hexamers

Rubisco activase (Rca) from higher plants is a stromal ATPase essential for reactivating Rubiscos rendered catalytically inactive by endogenous inhibitors. Rca’s functional state is thought to consist of ring-like hexameric assemblies, similar to other members of the AAA+ protein superfamily. However, unlike other members, it does not form obligate hexamers and is quite polydisperse in solution, making elucidation of its self-association pathway challenging. This polydispersity also makes interpretation of traditional biochemical approaches difficult, prompting use of a fluorescence-based technique (Fluorescence Correlation Spectroscopy) to investigate the relationship between quaternary structure and function. Like cotton β Rca, tobacco β Rca appears to assemble in a step-wise and nucleotide-dependent manner. Incubation in varying nucleotides appears to alter the equilibrium between varying oligomers, either promoting or minimizing the formation of larger oligomers. High concentrations of ADP seem to favor continuous assembly towards larger oligomers, while assembly in the presence of ATP-yS (an ATP analog) appears to halt continuous assembly in favor of hexameric species. In contrast, assembly in the “Active ATP Turnover” condition (a mixture of ATP and ADP) appears to favor an almost equal distribution of tetramer and hexamer, which when compared with ATPase activity, shows great alignment with maximum activity in the low µM range. Despite this alignment, the decrease in ATPase activity does not follow any particular oligomer, but rather decreases with increasing aggregation, suggesting that assembly dynamics may regulate ATPase activity, rather than the formation/disappearance of one specific oligomer. Work presented here also indicates that all oligomers larger than hexamers are catalytically inactive, thus providing support for the idea that they may serve as a storage mechanism to minimize wasteful hydrolysis. These findings are also supported by assembly work carried out on an Assembly Mutant (R294V), known for favoring formation of closed-ring hexamers. Similar assembly studies were carried out on spinach Rca, however, due to its aggregation propensity, FCS results were more difficult to interpret. Based on these findings, one could argue that assembly dynamics are essential for Rca function, both in ATPase and in regulation of Rubisco carboxylation activity, thus providing a rational for Rca’s high degree of polydispersity.
ContributorsSerban, Andrew J (Author) / Wachter, Rebekka M. (Thesis advisor) / Levitus, Marcia (Thesis advisor) / Redding, Kevin E (Committee member) / Van Horn, Wade D (Committee member) / Arizona State University (Publisher)
Created2018
148452-Thumbnail Image.png
Description

Due to the COVID-19 pandemic, declared in March of 2020, there have been many lifestyle changes which have likely influenced tobacco smoking behavior. Such lifestyle changes include lockdowns, stay at home orders, reduction in social cues related to smoking, increased stress, and boredom among other things. This study utilized a

Due to the COVID-19 pandemic, declared in March of 2020, there have been many lifestyle changes which have likely influenced tobacco smoking behavior. Such lifestyle changes include lockdowns, stay at home orders, reduction in social cues related to smoking, increased stress, and boredom among other things. This study utilized a cross-sectional survey which looked into these behaviors, primarily perceived risk to COVID-19, and determined if there is an association between perceived risk and education level/race. Education level is a proxy for income and material resources, therefore making it more likely that people with lower levels of education have fewer resources and higher perceived risk to negative effects of COVID-19. Additionally, people of color are often marginalized in the medical community along with being the target of heavy advertising by tobacco companies which have likely impacted risk to COVID-19 as well.

ContributorsLodha, Pratishtha (Author) / Leischow, J. Scott (Thesis director) / Pearson, Jennifer (Committee member) / School of Life Sciences (Contributor) / School of Human Evolution & Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description
The cell is a dense environment composes of proteins, nucleic acids, as well as other small molecules, which are constantly bombarding each other and interacting. These interactions and the diffusive motions are driven by internal thermal fluctuations. Upon collision, molecules can interact and form complexes. It is of interest to

The cell is a dense environment composes of proteins, nucleic acids, as well as other small molecules, which are constantly bombarding each other and interacting. These interactions and the diffusive motions are driven by internal thermal fluctuations. Upon collision, molecules can interact and form complexes. It is of interest to learn kinetic parameters such as reaction rates of one molecule converting to different species or two molecules colliding and form a new species as well as to learn diffusion coefficients.

Several experimental measurements can probe diffusion coefficients at the single-molecule and bulk level. The target of this thesis is on single-molecule methods, which can assess diffusion coefficients at the individual molecular level. For instance, super resolution methods like stochastic optical reconstruction microscopy (STORM) and photo activated localization microscopy (PALM), have a high spatial resolution with the cost of lower temporal resolution. Also, there is a different group of methods, such as MINFLUX, multi-detector tracking, which can track a single molecule with high spatio-temporal resolution. The problem with these methods is that they are only applicable to very diluted samples since they need to ensure existence of a single molecule in the region of interest (ROI).

In this thesis, the goal is to have the best of both worlds by achieving high spatio-temporal resolutions without being limited to a few molecules. To do so, one needs to refocus on fluorescence correlation spectroscopy (FCS) as a method that applies to both in vivo and in vitro systems with a high temporal resolution and relies on multiple molecules traversing a confocal volume for an extended period of time. The difficulty here is that the interpretation of the signal leads to different estimates for the kinetic parameters such as diffusion coefficients based on a different number of molecules we consider in the model. It is for this reason that the focus of this thesis is now on using Bayesian nonparametrics (BNPs) as a way to solve this model selection problem and extract kinetic parameters such as diffusion coefficients at the single-molecule level from a few photons, and thus with the highest temporal resolution as possible.
ContributorsJazani, Sina (Author) / Presse, Steve (Thesis advisor) / Matyushov, Dmitry (Committee member) / Levitus, Marcia (Committee member) / Fricks, John (Committee member) / Arizona State University (Publisher)
Created2020