Matching Items (2)
Filtering by

Clear all filters

156214-Thumbnail Image.png
Description
The tools developed for the use of investigating dynamical systems have provided critical understanding to a wide range of physical phenomena. Here these tools are used to gain further insight into scalar transport, and how it is affected by mixing. The aim of this research is to investigate the efficiency

The tools developed for the use of investigating dynamical systems have provided critical understanding to a wide range of physical phenomena. Here these tools are used to gain further insight into scalar transport, and how it is affected by mixing. The aim of this research is to investigate the efficiency of several different partitioning methods which demarcate flow fields into dynamically distinct regions, and the correlation of finite-time statistics from the advection-diffusion equation to these regions.

For autonomous systems, invariant manifold theory can be used to separate the system into dynamically distinct regions. Despite there being no equivalent method for nonautonomous systems, a similar analysis can be done. Systems with general time dependencies must resort to using finite-time transport barriers for partitioning; these barriers are the edges of Lagrangian coherent structures (LCS), the analog to the stable and unstable manifolds of invariant manifold theory. Using the coherent structures of a flow to analyze the statistics of trapping, flight, and residence times, the signature of anomalous diffusion are obtained.

This research also investigates the use of linear models for approximating the elements of the covariance matrix of nonlinear flows, and then applying the covariance matrix approximation over coherent regions. The first and second-order moments can be used to fully describe an ensemble evolution in linear systems, however there is no direct method for nonlinear systems. The problem is only compounded by the fact that the moments for nonlinear flows typically don't have analytic representations, therefore direct numerical simulations would be needed to obtain the moments throughout the domain. To circumvent these many computations, the nonlinear system is approximated as many linear systems for which analytic expressions for the moments exist. The parameters introduced in the linear models are obtained locally from the nonlinear deformation tensor.
ContributorsWalker, Phillip (Author) / Tang, Wenbo (Thesis advisor) / Kostelich, Eric (Committee member) / Mahalov, Alex (Committee member) / Moustaoui, Mohamed (Committee member) / Platte, Rodrigo (Committee member) / Arizona State University (Publisher)
Created2018
158829-Thumbnail Image.png
Description
Efforts to treat prostate cancer have seen an uptick, as the world’s most commoncancer in men continues to have increasing global incidence. Clinically, metastatic
prostate cancer is most commonly treated with hormonal therapy. The idea behind
hormonal therapy is to reduce androgen production, which prostate cancer cells
require for growth. Recently, the exploration

Efforts to treat prostate cancer have seen an uptick, as the world’s most commoncancer in men continues to have increasing global incidence. Clinically, metastatic
prostate cancer is most commonly treated with hormonal therapy. The idea behind
hormonal therapy is to reduce androgen production, which prostate cancer cells
require for growth. Recently, the exploration of the synergistic effects of the drugs
used in hormonal therapy has begun. The aim was to build off of these recent
advancements and further refine the synergistic drug model. The advancements I
implement come by addressing biological shortcomings and improving the model’s
internal mechanistic structure. The drug families being modeled, anti-androgens,
and gonadotropin-releasing hormone analogs, interact with androgen production in a
way that is not completely understood in the scientific community. Thus the models
representing the drugs show progress through their ability to capture their effect
on serum androgen. Prostate-specific antigen is the primary biomarker for prostate
cancer and is generally how population models on the subject are validated. Fitting
the model to clinical data and comparing it to other clinical models through the
ability to fit and forecast prostate-specific antigen and serum androgen is how this
improved model achieves validation. The improved model results further suggest that
the drugs’ dynamics should be considered in adaptive therapy for prostate cancer.
ContributorsReckell, Trevor (Author) / Kostelich, Eric (Thesis advisor) / Kuang, Yang (Committee member) / Mahalov, Alex (Committee member) / Arizona State University (Publisher)
Created2020