Matching Items (2)

148450-Thumbnail Image.png

Initial experiment of Adaptive Therapy to control Breast Cancer

Description

Adaptive therapy utilizes competitive interactions between resistant and sensitive cells by keeping some sensitive cells to control tumor burden with the aim of increasing overall survival and time to progression.

Adaptive therapy utilizes competitive interactions between resistant and sensitive cells by keeping some sensitive cells to control tumor burden with the aim of increasing overall survival and time to progression. The use of adaptive therapy to treat breast cancer, ovarian cancer, and pancreatic cancer in preclinical models has shown significant results in controlling tumor growth. The purpose of this thesis is to draft a protocol to study adaptive therapy in a preclinical model of breast cancer on MCF7, estrogen receptor-positive, cells that have evolved resistance to fulvestrant and palbociclib (MCF7 R). In this study, we used two protocols: drug dose adjustment and intermittent therapy. The MCF7 R cell lines were injected into the mammary fat pads of 11-month-old NOD/SCID gamma (NSG) mice (18 mice) which were then treated with gemcitabine.<br/>The results of this experiment did not provide complete information because of the short-term treatments. In addition, we saw an increase in the tumor size of a few of the treated mice, which could be due to the metabolism of the drug at that age, or because of the difference in injection times. Therefore, these adaptive therapy protocols on hormone-refractory breast cancer cell lines will be repeated on young, 6-week old mice by injecting the cell lines at the same time for all mice, which helps the results to be more consistent and accurate.

Contributors

Agent

Created

Date Created
  • 2021-05

158829-Thumbnail Image.png

Drug Modeling Dynamics in the Treatment of Prostate Cancer

Description

Efforts to treat prostate cancer have seen an uptick, as the world’s most commoncancer in men continues to have increasing global incidence. Clinically, metastatic
prostate cancer is most commonly treated

Efforts to treat prostate cancer have seen an uptick, as the world’s most commoncancer in men continues to have increasing global incidence. Clinically, metastatic
prostate cancer is most commonly treated with hormonal therapy. The idea behind
hormonal therapy is to reduce androgen production, which prostate cancer cells
require for growth. Recently, the exploration of the synergistic effects of the drugs
used in hormonal therapy has begun. The aim was to build off of these recent
advancements and further refine the synergistic drug model. The advancements I
implement come by addressing biological shortcomings and improving the model’s
internal mechanistic structure. The drug families being modeled, anti-androgens,
and gonadotropin-releasing hormone analogs, interact with androgen production in a
way that is not completely understood in the scientific community. Thus the models
representing the drugs show progress through their ability to capture their effect
on serum androgen. Prostate-specific antigen is the primary biomarker for prostate
cancer and is generally how population models on the subject are validated. Fitting
the model to clinical data and comparing it to other clinical models through the
ability to fit and forecast prostate-specific antigen and serum androgen is how this
improved model achieves validation. The improved model results further suggest that
the drugs’ dynamics should be considered in adaptive therapy for prostate cancer.

Contributors

Agent

Created

Date Created
  • 2020