Matching Items (6)
152948-Thumbnail Image.png
Description
Skeletal muscle injury may occur from repetitive short bursts of biomechanical strain that impair muscle function. Alternatively, variations of biomechanical strain such as those held for long-duration are used by clinicians to repair muscle and restore its function. Fibroblasts embedded within the unifying connective tissue of skeletal muscle experience these

Skeletal muscle injury may occur from repetitive short bursts of biomechanical strain that impair muscle function. Alternatively, variations of biomechanical strain such as those held for long-duration are used by clinicians to repair muscle and restore its function. Fibroblasts embedded within the unifying connective tissue of skeletal muscle experience these multiple and diverse mechanical stimuli and respond by secreting cytokines. Cytokines direct all stages of muscle regeneration including myoblasts differentiation, fusion to form myotubes, and myotube functionality. To examine how fibroblasts respond to variations in mechanical strain that may affect juxtapose muscle, a myofascial junction was bioengineered that examined the interaction between the two cell types. Fibroblasts were experimentally shown to increase myoblast differentiation, and fibroblast biomechanical strain mediated the extent to which differentiation occurred. Intereleukin-6 is a strain-regulated cytokine secreted by fibroblasts was determined to be necessary for fibroblast-mediated myoblast differentiation. Myotubes differentiated in the presence of strained fibroblasts express greater number of acetylcholine receptors, greater acetylcholine receptor sizes, and modified to be more or less sensitive to acetylcholine-induced contraction. This study provides direct evidence that strained and non-strained fibroblasts can serve as a vehicle to modify myoblast differentiation and myotube functionality. Further understanding the mechanisms regulating these processes may lead to clinical interventions that include strain-activated cellular therapies and bioengineered cell engraftment for mediating the regeneration and function of muscle in vivo.
ContributorsHicks, Michael (Author) / Standley, Paul R (Thesis advisor) / Rawls, Jeffrey (Committee member) / Lake, Douglas (Committee member) / Hinrichs, Richard (Committee member) / Arizona State University (Publisher)
Created2014
150154-Thumbnail Image.png
Description
As existing solar cell technologies come closer to their theoretical efficiency, new concepts that overcome the Shockley-Queisser limit and exceed 50% efficiency need to be explored. New materials systems are often investigated to achieve this, but the use of existing solar cell materials in advanced concept approaches is compelling for

As existing solar cell technologies come closer to their theoretical efficiency, new concepts that overcome the Shockley-Queisser limit and exceed 50% efficiency need to be explored. New materials systems are often investigated to achieve this, but the use of existing solar cell materials in advanced concept approaches is compelling for multiple theoretical and practical reasons. In order to include advanced concept approaches into existing materials, nanostructures are used as they alter the physical properties of these materials. To explore advanced nanostructured concepts with existing materials such as III-V alloys, silicon and/or silicon/germanium and associated alloys, fundamental aspects of using these materials in advanced concept nanostructured solar cells must be understood. Chief among these is the determination and predication of optimum electronic band structures, including effects such as strain on the band structure, and the material's opto-electronic properties. Nanostructures have a large impact on band structure and electronic properties through quantum confinement. An additional large effect is the change in band structure due to elastic strain caused by lattice mismatch between the barrier and nanostructured (usually self-assembled QDs) materials. To develop a material model for advanced concept solar cells, the band structure is calculated for single as well as vertical array of quantum dots with the realistic effects such as strain, associated with the epitaxial growth of these materials. The results show significant effect of strain in band structure. More importantly, the band diagram of a vertical array of QDs with different spacer layer thickness show significant change in band offsets, especially for heavy and light hole valence bands when the spacer layer thickness is reduced. These results, ultimately, have significance to develop a material model for advance concept solar cells that use the QD nanostructures as absorbing medium. The band structure calculations serve as the basis for multiple other calculations. Chief among these is that the model allows the design of a practical QD advanced concept solar cell, which meets key design criteria such as a negligible valence band offset between the QD/barrier materials and close to optimum band gaps, resulting in the predication of optimum material combinations.
ContributorsDahal, Som Nath (Author) / Honsberg, Christiana (Thesis advisor) / Goodnick, Stephen (Committee member) / Roedel, Ronald (Committee member) / Ponce, Fernando (Committee member) / Arizona State University (Publisher)
Created2011
150232-Thumbnail Image.png
Description
Raman scattering from Ge-Si core-shell nanowires is investigated theoretically and experimentally. A theoretical model that makes it possible to extract quantitative strain information from the measured Raman spectra is presented for the first time. Geometrical and elastic simplifications are introduced to keep the model analytical, which facilitates comparison with experimental

Raman scattering from Ge-Si core-shell nanowires is investigated theoretically and experimentally. A theoretical model that makes it possible to extract quantitative strain information from the measured Raman spectra is presented for the first time. Geometrical and elastic simplifications are introduced to keep the model analytical, which facilitates comparison with experimental results. In particular, the nanowires are assumed to be cylindrical, and their elastic constants isotropic. The simple analytical model is subsequently validated by performing numerical calculations using realistic nanowire geometries and cubic, anisotropic elastic constants. The comparison confirms that the analytic model is an excellent approximation that greatly facilitates quantitative Raman work, with expected errors in the strain determination that do not exceed 10%. Experimental Raman spectra of a variety of core-shell nanowires are presented, and the strain in the nanowires is assessed using the models described above. It is found that all structures present a significant degree of strain relaxation relative to ideal, fully strained Ge-Si core-shell structures. The analytical models are modified to quantify this strain relaxation.
ContributorsSingh, Rachna (Author) / Menéndez, Jose (Thesis advisor) / Drucker, Jeffery (Committee member) / Ponce, Fernando (Committee member) / Tsen, Kong-Thon (Committee member) / Bennett, Peter (Committee member) / Arizona State University (Publisher)
Created2011
150889-Thumbnail Image.png
Description
Pb-free solder joints are commonly used as interconnects in semiconductor packaging. One of the major defects affecting the mechanical performance of solder joints are reflow pores that form during processing. These pores exhibit significant variability in size and distribution, and understanding the effects of pore geometry on failure is an

Pb-free solder joints are commonly used as interconnects in semiconductor packaging. One of the major defects affecting the mechanical performance of solder joints are reflow pores that form during processing. These pores exhibit significant variability in size and distribution, and understanding the effects of pore geometry on failure is an important reliability concern. In this thesis, the pore microstructures of solder joint samples and the localized plastic deformation around individual pores was characterized in 3D using lab scale X-ray Microtomography. To observe the deformation of a solder joint in 3D, a solder joint was imaged with Microtomography after reflow and then deformed in shear in several loading steps with additional tomography data taken between each. The 3D tomography datasets were then segmented using the 3D Livewire technique into regions corresponding to solder and pores, and used to generate 3D models of the joint at each strain value using Mimics software. The extent of deformation of individual pores in the joint as a function of strain was quantified using sphericity measurements, and correlated with the observed cracking in the joint. In addition, the error inherent in the data acquisition and 3D modeling process was also quantified. The progression of damage observed with X-ray Microtomography was then used to validate the deformation and failure predicted by a Finite Element (FE) simulation. The FE model was based on the as-reflowed tomography data, and incorporated a ductile damage failure model to simulate fracture. Using the measured sphericity change and cracking information obtained from the tomography data, the FE model is shown to correctly capture the broad plastic deformation and strain localization seen in the actual joint, as well as the crack propagation. Lastly, Digital Image Correlation was investigated as a method of obtaining improved local strain measurements in 3D. This technique measures the displacement of the inherent microstructural features of the joint, and can give localized strain measurements that can be directly comparable to that predicted by modeling. The technique is demonstrated in 2D on Pb-Sn solder, and example 3D data is presented for future analysis.
ContributorsPadilla, Erick (Author) / Chawla, Nikhilesh (Thesis advisor) / Alford, Terry (Committee member) / Krause, Stephen (Committee member) / Arizona State University (Publisher)
Created2012
Description

The objective of this experiment was to investigate the correlation between the starting pitch angle of a Dragon Boat paddle and the ensuing total stress and force on the paddle during the first stroke. During the first stroke (i.e., starting at rest) the stress on the paddle can be equated

The objective of this experiment was to investigate the correlation between the starting pitch angle of a Dragon Boat paddle and the ensuing total stress and force on the paddle during the first stroke. During the first stroke (i.e., starting at rest) the stress on the paddle can be equated with the force output. To do this, a paddle was modified with a strain gauge and other equipment, and tests were run varying the pitch angle. The results showed that while the most positive starting angle yielded the highest stress and force on the paddle, there was no discernible trend correlating the angle to the stress. Further experimentation must be run to determine which other factors influence the stress.

ContributorsHeitmann, Kevin Matthew (Author) / Takahashi, Timothy (Thesis director) / Kasbaoui, Mohamed (Committee member) / Materials Science and Engineering Program (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
158680-Thumbnail Image.png
Description
Though a single mode of energy transfer, optical radiation meaningfully interacts with its surrounding environment at over a wide range of physical length scales. For this reason, its reconstruction and measurement are of great importance in remote sensing, as these multi-scale interactions encode a great deal of information about distant

Though a single mode of energy transfer, optical radiation meaningfully interacts with its surrounding environment at over a wide range of physical length scales. For this reason, its reconstruction and measurement are of great importance in remote sensing, as these multi-scale interactions encode a great deal of information about distant objects, surfaces, and physical phenomena. For some remote sensing applications, obtaining a desired quantity of interest does not necessitate the explicit mapping of each point in object space to an image space with lenses or mirrors. Instead, only edge rays or physical boundaries of the sensing instrument are considered, while the spatial intensity distribution of optical energy received from a distant object informs its position, optical characteristics, or physical/chemical state.

Admittedly specialized, the principals and consequences of non-imaging optics are nevertheless applicable to heterogeneous semiconductor integration and automotive light detection and ranging (LiDAR), two important emerging technologies. Indeed, a review of relevant engineering literature finds two under-addressed remote sensing challenges. The semiconductor industry lacks an optical strain metrology with displacement resolution smaller than 100 nanometers capable of measuring strain fields between high-density interconnect lines. Meanwhile, little attention is paid to the per-meter sensing characteristics of scene-illuminating flash LiDAR in the context of automotive applications, despite the technology’s much lower cost. It is here that non-imaging optics offers intriguing instrument design and explanations of observed sensor performance at vastly different length scales.

In this thesis, an effective non-contact technique for mapping nanoscale mechanical strain fields and out-of-plane surface warping via laser diffraction is demonstrated, with application as a novel metrology for next-generation semiconductor packages. Additionally, object detection distance of low-cost automotive flash LiDAR, on the order of tens of meters, is understood though principals of optical energy transfer from the surface of a remote object to an extended multi-segment detector. Such information is of consequence when designing an automotive perception system to recognize various roadway objects in low-light scenarios.
ContributorsHoughton, Todd Kristopher (Author) / Yu, Hongbin (Thesis advisor) / Jiang, Hanqing (Committee member) / Jayasuriya, Suren (Committee member) / Zhang, Liang (Committee member) / Arizona State University (Publisher)
Created2020