Matching Items (5)
Filtering by

Clear all filters

148333-Thumbnail Image.png
Description

This thesis attempts to explain Everettian quantum mechanics from the ground up, such that those with little to no experience in quantum physics can understand it. First, we introduce the history of quantum theory, and some concepts that make up the framework of quantum physics. Through these concepts, we reveal

This thesis attempts to explain Everettian quantum mechanics from the ground up, such that those with little to no experience in quantum physics can understand it. First, we introduce the history of quantum theory, and some concepts that make up the framework of quantum physics. Through these concepts, we reveal why interpretations are necessary to map the quantum world onto our classical world. We then introduce the Copenhagen interpretation, and how many-worlds differs from it. From there, we dive into the concepts of entanglement and decoherence, explaining how worlds branch in an Everettian universe, and how an Everettian universe can appear as our classical observed world. From there, we attempt to answer common questions about many-worlds and discuss whether there are philosophical ramifications to believing such a theory. Finally, we look at whether the many-worlds interpretation can be proven, and why one might choose to believe it.

ContributorsSecrest, Micah (Author) / Foy, Joseph (Thesis director) / Hines, Taylor (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148341-Thumbnail Image.png
Description

The purpose of this paper is to provide an analysis of entanglement and the particular problems it poses for some physicists. In addition to looking at the history of entanglement and non-locality, this paper will use the Bell Test as a means for demonstrating how entanglement works, which measures the

The purpose of this paper is to provide an analysis of entanglement and the particular problems it poses for some physicists. In addition to looking at the history of entanglement and non-locality, this paper will use the Bell Test as a means for demonstrating how entanglement works, which measures the behavior of electrons whose combined internal angular momentum is zero. This paper will go over Dr. Bell's famous inequality, which shows why the process of entanglement cannot be explained by traditional means of local processes. Entanglement will be viewed initially through the Copenhagen Interpretation, but this paper will also look at two particular models of quantum mechanics, de-Broglie Bohm theory and Everett's Many-Worlds Interpretation, and observe how they explain the behavior of spin and entangled particles compared to the Copenhagen Interpretation.

ContributorsWood, Keaten Lawrence (Author) / Foy, Joseph (Thesis director) / Hines, Taylor (Committee member) / Department of Physics (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
DescriptionThis project covers the history and background of the phenomenon in quantum physics known as quantum entanglement. The paper then describes the experiments done by the 2022 Nobel Prize winners on entangled particles and the possible real-world applications of such research.
ContributorsHossain, Tasnia (Author) / Foy, Joseph (Thesis director) / Hines, Taylor (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2023-05
187534-Thumbnail Image.png
Description
Marine plastic pollution (MPP) has emerged as one of the most pressing global environmental challenges of the anthropocene. There has been an upsurge in investment to mitigate MPP; however, interventions can be costly, inequitable, and ineffective in achieving their objectives. In my dissertation, I aim to research key considerations for

Marine plastic pollution (MPP) has emerged as one of the most pressing global environmental challenges of the anthropocene. There has been an upsurge in investment to mitigate MPP; however, interventions can be costly, inequitable, and ineffective in achieving their objectives. In my dissertation, I aim to research key considerations for creating cost-effective, equitable mitigation strategies for MPP and its impacts to marine biodiversity and coastal communities. In chapter one, I introduce the challenges plastic pollution poses. In chapter two, I use seascape ecology theory to present the concept of the plastic-scape and describe how seascape ecology principles, methods, and approaches to transdisciplinary science can inform research to mitigate MPP. In chapter three, I present a framework to help decision makers estimate the total cost of MPP interventions and partial costs accrued by stakeholder groups. I then apply this framework to two quantitative case studies and four comparative case studies to exemplify its use and highlight the ways spatial scale, temporal scale, and socio-economic conditions influence the intervention cost and cost distribution. In chapter four, I employ a trait-based approach to produce a framework for developing indices of species vulnerability to macroplastic pollution. Finally, in chapter five, I implement the framework developed in the previous chapter and present a multi-taxonomic, macroplastic vulnerability index for three marine taxa—mammals, birds, and turtles—to identify the marine species most vulnerable to macroplastic pollution in Hawai‘i. Overall, my dissertation shows how policy-driven, systemic research of MPP and its interventions can improve efforts to address MPP and its socio-economic and ecological consequences.
ContributorsMurphy, Erin (Author) / Gerber, Leah R (Thesis advisor) / Polidoro, Beth (Thesis advisor) / Rochman, Chelsea (Committee member) / Dooley, Kevin (Committee member) / Arizona State University (Publisher)
Created2023
Description
Quantum entanglement, a phenomenon first introduced in the realm of quantum mechanics by the famous Einstein-Podolsky-Rosen (EPR) paradox, has intrigued physicists and philosophers alike for nearly a century. Its implications for the nature of reality, particularly its apparent violation of local realism, have sparked intense debate and spurred numerous experimental

Quantum entanglement, a phenomenon first introduced in the realm of quantum mechanics by the famous Einstein-Podolsky-Rosen (EPR) paradox, has intrigued physicists and philosophers alike for nearly a century. Its implications for the nature of reality, particularly its apparent violation of local realism, have sparked intense debate and spurred numerous experimental investigations. This thesis presents a comprehensive examination of quantum entanglement with a focus on probing its non-local aspects. Central to this thesis is the development of a detailed project document outlining a proposed experimental approach to investigate the non-local nature of quantum entanglement. Drawing upon recent advancements in quantum technology, including the manipulation and control of entangled particles, the proposed experiment aims to rigorously test the predictions of quantum mechanics against the framework of local realism. The experimental setup involves the generation of entangled particle pairs, such as photons or ions, followed by the precise manipulation of their quantum states. By implementing a series of carefully designed measurements on spatially separated entangled particles, the experiment seeks to discern correlations that defy explanation within a local realistic framework.
ContributorsWasserbeck, Noah (Author) / Lukens, Joseph (Thesis director) / Arenz, Christian (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2024-05