Matching Items (2)

148300-Thumbnail Image.png

Association between Student Engagement and Resilience in the Context of COVID-19

Description

During the global COVID-19 pandemic in 2020, many universities shifted their focus to hosting classes and events online for their student population in order to keep them engaged. The present

During the global COVID-19 pandemic in 2020, many universities shifted their focus to hosting classes and events online for their student population in order to keep them engaged. The present study investigated whether an association exists between student engagement (an individual’s engagement with class and campus) and resilience. A single-shot survey was administered to 200 participants currently enrolled as undergraduate students at Arizona State University. A multiple regression analysis and Pearson correlations were calculated. A moderate, significant correlation was found between student engagement (total score) and resilience. A significant correlation was found between cognitive engagement (student’s approach and understanding of his learning) and resilience and between valuing and resilience. Contrary to expectations, participation was not associated with resilience. Potential explanations for these results were explored and practical applications for the university were discussed.

Contributors

Agent

Created

Date Created
  • 2021-05

151684-Thumbnail Image.png

Maximizing the benefits of collaborative learning in the college classroom

Description

This study tested the effects of two kinds of cognitive, domain-based preparation tasks on learning outcomes after engaging in a collaborative activity with a partner. The collaborative learning method of

This study tested the effects of two kinds of cognitive, domain-based preparation tasks on learning outcomes after engaging in a collaborative activity with a partner. The collaborative learning method of interest was termed "preparing-to-interact," and is supported in theory by the Preparation for Future Learning (PFL) paradigm and the Interactive-Constructive-Active-Passive (ICAP) framework. The current work combined these two cognitive-based approaches to design collaborative learning activities that can serve as alternatives to existing methods, which carry limitations and challenges. The "preparing-to-interact" method avoids the need for training students in specific collaboration skills or guiding/scripting their dialogic behaviors, while providing the opportunity for students to acquire the necessary prior knowledge for maximizing their discussions towards learning. The study used a 2x2 experimental design, investigating the factors of Preparation (No Prep and Prep) and Type of Activity (Active and Constructive) on deep and shallow learning. The sample was community college students in introductory psychology classes; the domain tested was "memory," in particular, concepts related to the process of remembering/forgetting information. Results showed that Preparation was a significant factor affecting deep learning, while shallow learning was not affected differently by the interventions. Essentially, equalizing time-on-task and content across all conditions, time spent individually preparing by working on the task alone and then discussing the content with a partner produced deeper learning than engaging in the task jointly for the duration of the learning period. Type of Task was not a significant factor in learning outcomes, however, exploratory analyses showed evidence of Constructive-type behaviors leading to deeper learning of the content. Additionally, a novel method of multilevel analysis (MLA) was used to examine the data to account for the dependency between partners within dyads. This work showed that "preparing-to-interact" is a way to maximize the benefits of collaborative learning. When students are first cognitively prepared, they seem to make the most efficient use of discussion towards learning, engage more deeply in the content during learning, leading to deeper knowledge of the content. Additionally, in using MLA to account for subject nonindependency, this work introduces new questions about the validity of statistical analyses for dyadic data.

Contributors

Agent

Created

Date Created
  • 2013