Matching Items (3)
Filtering by

Clear all filters

151275-Thumbnail Image.png
Description
The pay-as-you-go economic model of cloud computing increases the visibility, traceability, and verifiability of software costs. Application developers must understand how their software uses resources when running in the cloud in order to stay within budgeted costs and/or produce expected profits. Cloud computing's unique economic model also leads naturally to

The pay-as-you-go economic model of cloud computing increases the visibility, traceability, and verifiability of software costs. Application developers must understand how their software uses resources when running in the cloud in order to stay within budgeted costs and/or produce expected profits. Cloud computing's unique economic model also leads naturally to an earn-as-you-go profit model for many cloud based applications. These applications can benefit from low level analyses for cost optimization and verification. Testing cloud applications to ensure they meet monetary cost objectives has not been well explored in the current literature. When considering revenues and costs for cloud applications, the resource economic model can be scaled down to the transaction level in order to associate source code with costs incurred while running in the cloud. Both static and dynamic analysis techniques can be developed and applied to understand how and where cloud applications incur costs. Such analyses can help optimize (i.e. minimize) costs and verify that they stay within expected tolerances. An adaptation of Worst Case Execution Time (WCET) analysis is presented here to statically determine worst case monetary costs of cloud applications. This analysis is used to produce an algorithm for determining control flow paths within an application that can exceed a given cost threshold. The corresponding results are used to identify path sections that contribute most to cost excess. A hybrid approach for determining cost excesses is also presented that is comprised mostly of dynamic measurements but that also incorporates calculations that are based on the static analysis approach. This approach uses operational profiles to increase the precision and usefulness of the calculations.
ContributorsBuell, Kevin, Ph.D (Author) / Collofello, James (Thesis advisor) / Davulcu, Hasan (Committee member) / Lindquist, Timothy (Committee member) / Sen, Arunabha (Committee member) / Arizona State University (Publisher)
Created2012
156331-Thumbnail Image.png
Description
Graph theory is a critical component of computer science and software engineering, with algorithms concerning graph traversal and comprehension powering much of the largest problems in both industry and research. Engineers and researchers often have an accurate view of their target graph, however they struggle to implement a correct, and

Graph theory is a critical component of computer science and software engineering, with algorithms concerning graph traversal and comprehension powering much of the largest problems in both industry and research. Engineers and researchers often have an accurate view of their target graph, however they struggle to implement a correct, and efficient, search over that graph.

To facilitate rapid, correct, efficient, and intuitive development of graph based solutions we propose a new programming language construct - the search statement. Given a supra-root node, a procedure which determines the children of a given parent node, and optional definitions of the fail-fast acceptance or rejection of a solution, the search statement can conduct a search over any graph or network. Structurally, this statement is modelled after the common switch statement and is put into a largely imperative/procedural context to allow for immediate and intuitive development by most programmers. The Go programming language has been used as a foundation and proof-of-concept of the search statement. A Go compiler is provided which implements this construct.
ContributorsHenderson, Christopher (Author) / Bansal, Ajay (Thesis advisor) / Lindquist, Timothy (Committee member) / Acuna, Ruben (Committee member) / Arizona State University (Publisher)
Created2018
148109-Thumbnail Image.png
Description

System and software verification is a vital component in the development and reliability of cyber-physical systems - especially in critical domains where the margin of error is minimal. In the case of autonomous driving systems (ADS), the vision perception subsystem is a necessity to ensure correct maneuvering of the environment

System and software verification is a vital component in the development and reliability of cyber-physical systems - especially in critical domains where the margin of error is minimal. In the case of autonomous driving systems (ADS), the vision perception subsystem is a necessity to ensure correct maneuvering of the environment and identification of objects. The challenge posed in perception systems involves verifying the accuracy and rigidity of detections. The use of Spatio-Temporal Perception Logic (STPL) enables the user to express requirements for the perception system to verify, validate, and ensure its behavior; however, a drawback to STPL involves its accessibility. It is limited to individuals with an expert or higher-level knowledge of temporal and spatial logics, and the formal-written requirements become quite verbose with more restrictions imposed. In this thesis, I propose a domain-specific language (DSL) catered to Spatio-Temporal Perception Logic to enable non-expert users the ability to capture requirements for perception subsystems while reducing the necessity to have an experienced background in said logic. The domain-specific language for the Spatio-Temporal Perception Logic is built upon the formal language with two abstractions. The main abstraction captures simple programming statements that are translated to a lower-level STPL expression accepted by the testing monitor. The STPL DSL provides a seamless interface to writing formal expressions while maintaining the power and expressiveness of STPL. These translated equivalent expressions are capable of directing a standard for perception systems to ensure the safety and reduce the risks involved in ill-formed detections.

ContributorsAnderson, Jacob (Author) / Fainekos, Georgios (Thesis director) / Yezhou, Yang (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05