Matching Items (3)
148104-Thumbnail Image.png
Description

Reducing the amount of error and introduced data variability increases the accuracy of Western blot results. In this study, different methods of normalization for loading differences and data alignment were explored with respect to their impact on Western blot results. GAPDH was compared to the LI-COR Revert total protein stain

Reducing the amount of error and introduced data variability increases the accuracy of Western blot results. In this study, different methods of normalization for loading differences and data alignment were explored with respect to their impact on Western blot results. GAPDH was compared to the LI-COR Revert total protein stain as a loading control. The impact of normalizing data to a control condition, which is commonly done to align Western blot data distributed over several immunoblots, was also investigated. Specifically, this study addressed whether normalization to a small subset of distinct controls on each immunoblot increases pooled data variability compared to a larger set of controls. Protein expression data for NOX-2 and SOD-2 from a study investigating the protective role of the bradykinin type 1 receptor in angiotensin-II induced left ventricle remodeling were used to address these questions but are also discussed in the context of the original study. The comparison of GAPDH and Revert total protein stain as a loading control was done by assessing their correlation and comparing how they affected protein expression results. Additionally, the impact of treatment on GAPDH was investigated. To assess how normalization to different combinations of controls influences data variability, protein data were normalized to the average of 5 controls, the average of 2 controls, or an average vehicle and the results by treatment were compared. The results of this study demonstrated that GAPDH expression is not affected by angiotensin-II or bradykinin type 1 receptor antagonist R-954 and is a less sensitive loading control compared to Revert total protein stain. Normalization to the average of 5 controls tended to reduce pooled data variability compared to 2 controls. Lastly, the results of this study provided preliminary evidence that R-954 does not alter the expression of NOX-2 or SOD-2 to an expression profile that would be expected to explain the protection it confers against Ang-II induced left ventricle remodeling.

ContributorsSiegel, Matthew Marat (Author) / Jeremy, Mills (Thesis director) / Sweazea, Karen (Committee member) / Hale, Taben (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Model organisms like Homo sapiens, Drosophila, and E. coli, while useful to various fields of study, present a problem to the scientific community: many other organisms’ proteins, metabolic processes, and biochemical mechanisms are not as well understood by comparison. Pocillopora damicornis (Pdam), like many other coral organisms, faces environmental stresses

Model organisms like Homo sapiens, Drosophila, and E. coli, while useful to various fields of study, present a problem to the scientific community: many other organisms’ proteins, metabolic processes, and biochemical mechanisms are not as well understood by comparison. Pocillopora damicornis (Pdam), like many other coral organisms, faces environmental stresses and threats to its survival in ocean ecosystems with limited understanding of its biochemical mechanisms, making it difficult to help preserve. However, upon analyzing the symbiotic relationship of Pdam and photosynthetic algae, it was reasoned that the coral organism is capable of detecting light. Following up with results of prior bioinformatics analysis courtesy of Kumar, L., Klein-Seetharaman, J., Et. Al, it was proposed that light sensitive proteins in corals are the following four candidates: 2270, 12246, 629, 19775. If chromophores form and their opsin shifts can be visualized in the case in any of the coral candidate opsin genes, it supports the hypothesis that the proteins are indeed a light sensitive opsin protein. If a light sensitive opsin protein is identified, it provides a direction by which efforts can be directed towards to understand corals at the biochemical level for their preservation in the face of unprecedented threats to sustainability.

ContributorsGoh, Naven (Author) / Klein-Seetharaman, Judith (Thesis director) / Chiu, Po-Lin (Committee member) / Levitus, Marcia (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor)
Created2023-05
166167-Thumbnail Image.png
Description

The 5-year survival rate for late-stage metastatic melanoma is only ~30%. A major reason for this low survival rate is that one of the most commonly mutated genes in melanoma, NRAS, has no FDA-approved targeted therapies. Because the RAS protein does not have any targeted therapies, patients with RAS mutant

The 5-year survival rate for late-stage metastatic melanoma is only ~30%. A major reason for this low survival rate is that one of the most commonly mutated genes in melanoma, NRAS, has no FDA-approved targeted therapies. Because the RAS protein does not have any targeted therapies, patients with RAS mutant tumors have an ongoing need for treatments that indirectly target RAS. This thesis project aims to identify expression and phosphorylation levels of proteins downstream of RAS in melanoma cell lines with the most common driver mutations. By analyzing the protein-level differences between these genetic mutants, we hope to identify additional indirect RAS protein targets for the treatment of NRAS mutant melanoma. RAS has several downstream effector proteins involved in oncogenic signaling pathways including FAK, Paxillin, AKT, and ERK. 5 melanoma cell lines (2 BRAF mutant, 2 NRAS mutant, and 1 designated wildtype) were analyzed using western bloting for FAK, Paxillin, AKT, and ERK phosphorylation and total expression levels. The results of western blot analysis showed that NRAS mutant cell lines had increased expression of phosphorylated Paxillin. Increased Paxillin phosphorylation corresponds to increased Paxillin binding at the FAT domain of FAK. Therefore, cell lines with increased FAK FAT – Paxillin interaction would be more sensitive to FAK FAT domain inhibition. The data presented provide an an explanation for the reduction in cell viability in NRAS mutant cell lines infected with Ad-FRNK. This information also has significant clinical relevance as researchers work to develop synthetic FAK FAT domain inhibitors, such as cyclic peptides. Additionally, cell lines with high levels of phosphorylated AKT showed a significant reduction in the amount of phosphorylated ERK. The identification of this inverse relationship may help to explain why BRAF and NRAS mutations are mutually exclusive. To conclude, NRAS mutant cell lines have increased expression of phosphorylated Paxillin and AKT which may explain why NRAS mutant cell lines are more sensitive to FAK FAT domain inhibition.

ContributorsSherwood, Nicole (Author) / Gould, Ian (Thesis director) / LaBaer, Joshua (Committee member) / Marlowe, Timothy (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2022-05