Matching Items (5)

148057-Thumbnail Image.png

Optimal Sampling for Function Approximation

Description

This thesis project focuses on algorithms that generate good sampling points for function approximation. In one dimension, polynomial interpolation using equispaced points is unstable, with high Oscillations near the

This thesis project focuses on algorithms that generate good sampling points for function approximation. In one dimension, polynomial interpolation using equispaced points is unstable, with high Oscillations near the endpoints of the interpolated interval. On the other hand, Chebyshev nodes provide both stable and highly accurate points for polynomial interpolation. In higher dimensions, optimal sampling points are unknown. This project addresses this problem by finding algorithms that are robust in various domains for polynomial interpolation and least-squares. To measure the quality of the nodes produced by said algorithms, the Lebesgue constant will be used. In the algorithms, a number of numerical techniques will be used, such as the Gram-Schmidt process and the pivoted-QR process. In addition, concepts such as node density and greedy algorithms will be explored.

Contributors

Agent

Created

Date Created
  • 2021-05

151618-Thumbnail Image.png

Implementing rapid assessment of the trail environments of arid regions: indicator development and implementation scenarios

Description

As part of the effort to streamline management efforts in protected areas worldwide and assist accountability reporting, new techniques to help guide conservation goals and monitor progress are needed. Rapid

As part of the effort to streamline management efforts in protected areas worldwide and assist accountability reporting, new techniques to help guide conservation goals and monitor progress are needed. Rapid assessment is recognized as a field-level data collection technique, but each rapid assessment index is limited to only the ecoregion for which it is designed. This dissertation contributes to the existing bodies of conservation monitoring and tourism management literature in four ways: (i.) Indicators are developed for rapid assessment in arid and semi-arid regions, and the processes by which new indicators should be developed is explained; (ii.) Interpolation of surveyed data is explored as a step in the analysis process of a dataset collected through rapid assessment; (iii.) Viewshed is used to explore differences in impacts at two study sites and its underutilization in this context of conservation management is explored; and (iv.) A crowdsourcing tool to distribute the effort of monitoring trail areas is developed and deployed, and the results are used to explore this data collection's usefulness as a management tool.

Contributors

Agent

Created

Date Created
  • 2013

156919-Thumbnail Image.png

Advances in Motion Estimators for Applications in Computer Vision

Description

Motion estimation is a core task in computer vision and many applications utilize optical flow methods as fundamental tools to analyze motion in images and videos. Optical flow is the

Motion estimation is a core task in computer vision and many applications utilize optical flow methods as fundamental tools to analyze motion in images and videos. Optical flow is the apparent motion of objects in image sequences that results from relative motion between the objects and the imaging perspective. Today, optical flow fields are utilized to solve problems in various areas such as object detection and tracking, interpolation, visual odometry, etc. In this dissertation, three problems from different areas of computer vision and the solutions that make use of modified optical flow methods are explained.

The contributions of this dissertation are approaches and frameworks that introduce i) a new optical flow-based interpolation method to achieve minimally divergent velocimetry data, ii) a framework that improves the accuracy of change detection algorithms in synthetic aperture radar (SAR) images, and iii) a set of new methods to integrate Proton Magnetic Resonance Spectroscopy (1HMRSI) data into threedimensional (3D) neuronavigation systems for tumor biopsies.

In the first application an optical flow-based approach for the interpolation of minimally divergent velocimetry data is proposed. The velocimetry data of incompressible fluids contain signals that describe the flow velocity. The approach uses the additional flow velocity information to guide the interpolation process towards reduced divergence in the interpolated data.

In the second application a framework that mainly consists of optical flow methods and other image processing and computer vision techniques to improve object extraction from synthetic aperture radar images is proposed. The proposed framework is used for distinguishing between actual motion and detected motion due to misregistration in SAR image sets and it can lead to more accurate and meaningful change detection and improve object extraction from a SAR datasets.

In the third application a set of new methods that aim to improve upon the current state-of-the-art in neuronavigation through the use of detailed three-dimensional (3D) 1H-MRSI data are proposed. The result is a progressive form of online MRSI-guided neuronavigation that is demonstrated through phantom validation and clinical application.

Contributors

Agent

Created

Date Created
  • 2018

157649-Thumbnail Image.png

Optimal sampling for linear function approximation and high-order finite difference methods over complex regions

Description

I focus on algorithms that generate good sampling points for function approximation. In 1D, it is well known that polynomial interpolation using equispaced points is unstable. On the other hand,

I focus on algorithms that generate good sampling points for function approximation. In 1D, it is well known that polynomial interpolation using equispaced points is unstable. On the other hand, using Chebyshev nodes provides both stable and highly accurate points for polynomial interpolation. In higher dimensional complex regions, optimal sampling points are not known explicitly. This work presents robust algorithms that find good sampling points in complex regions for polynomial interpolation, least-squares, and radial basis function (RBF) methods. The quality of these nodes is measured using the Lebesgue constant. I will also consider optimal sampling for constrained optimization, used to solve PDEs, where boundary conditions must be imposed. Furthermore, I extend the scope of the problem to include finding near-optimal sampling points for high-order finite difference methods. These high-order finite difference methods can be implemented using either piecewise polynomials or RBFs.

Contributors

Agent

Created

Date Created
  • 2019

151656-Thumbnail Image.png

Analytical control grid registration for efficient application of optical flow

Description

Image resolution limits the extent to which zooming enhances clarity, restricts the size digital photographs can be printed at, and, in the context of medical images, can prevent a diagnosis.

Image resolution limits the extent to which zooming enhances clarity, restricts the size digital photographs can be printed at, and, in the context of medical images, can prevent a diagnosis. Interpolation is the supplementing of known data with estimated values based on a function or model involving some or all of the known samples. The selection of the contributing data points and the specifics of how they are used to define the interpolated values influences how effectively the interpolation algorithm is able to estimate the underlying, continuous signal. The main contributions of this dissertation are three fold: 1) Reframing edge-directed interpolation of a single image as an intensity-based registration problem. 2) Providing an analytical framework for intensity-based registration using control grid constraints. 3) Quantitative assessment of the new, single-image enlargement algorithm based on analytical intensity-based registration. In addition to single image resizing, the new methods and analytical approaches were extended to address a wide range of applications including volumetric (multi-slice) image interpolation, video deinterlacing, motion detection, and atmospheric distortion correction. Overall, the new approaches generate results that more accurately reflect the underlying signals than less computationally demanding approaches and with lower processing requirements and fewer restrictions than methods with comparable accuracy.

Contributors

Agent

Created

Date Created
  • 2013