Matching Items (8)
Filtering by

Clear all filters

156926-Thumbnail Image.png
Description
Understanding changes and trends in biomedical knowledge is crucial for individuals, groups, and institutions as biomedicine improves people’s lives, supports national economies, and facilitates innovation. However, as knowledge changes what evidence illustrates knowledge changes? In the case of microbiome, a multi-dimensional concept from biomedicine, there are significant increases in publications,

Understanding changes and trends in biomedical knowledge is crucial for individuals, groups, and institutions as biomedicine improves people’s lives, supports national economies, and facilitates innovation. However, as knowledge changes what evidence illustrates knowledge changes? In the case of microbiome, a multi-dimensional concept from biomedicine, there are significant increases in publications, citations, funding, collaborations, and other explanatory variables or contextual factors. What is observed in the microbiome, or any historical evolution of a scientific field or scientific knowledge, is that these changes are related to changes in knowledge, but what is not understood is how to measure and track changes in knowledge. This investigation highlights how contextual factors from the language and social context of the microbiome are related to changes in the usage, meaning, and scientific knowledge on the microbiome. Two interconnected studies integrating qualitative and quantitative evidence examine the variation and change of the microbiome evidence are presented. First, the concepts microbiome, metagenome, and metabolome are compared to determine the boundaries of the microbiome concept in relation to other concepts where the conceptual boundaries have been cited as overlapping. A collection of publications for each concept or corpus is presented, with a focus on how to create, collect, curate, and analyze large data collections. This study concludes with suggestions on how to analyze biomedical concepts using a hybrid approach that combines results from the larger language context and individual words. Second, the results of a systematic review that describes the variation and change of microbiome research, funding, and knowledge are examined. A corpus of approximately 28,000 articles on the microbiome are characterized, and a spectrum of microbiome interpretations are suggested based on differences related to context. The collective results suggest the microbiome is a separate concept from the metagenome and metabolome, and the variation and change to the microbiome concept was influenced by contextual factors. These results provide insight into how concepts with extensive resources behave within biomedicine and suggest the microbiome is possibly representative of conceptual change or a preview of new dynamics within science that are expected in the future.
ContributorsAiello, Kenneth (Author) / Laubichler, Manfred D (Thesis advisor) / Simeone, Michael (Committee member) / Buetow, Kenneth (Committee member) / Walker, Sara I (Committee member) / Arizona State University (Publisher)
Created2018
148319-Thumbnail Image.png
Description

Urologic diseases interstitial cystitis (IC), overactive bladder (OAB), and urinary tract infection (UTI) affect tens of millions of people per year in the US alone. The human microbiome consists of a diverse community of bacteria (bacteriome) and viruses (virome) harbored in each individual that contributes to health and disease. Little

Urologic diseases interstitial cystitis (IC), overactive bladder (OAB), and urinary tract infection (UTI) affect tens of millions of people per year in the US alone. The human microbiome consists of a diverse community of bacteria (bacteriome) and viruses (virome) harbored in each individual that contributes to health and disease. Little is known about how the microbiome impacts urinary disorders. Using next-generation metagenomic sequencing, we characterized the urinary bacteriome and virome of patients with urinary disorders (IC, OAB, and UTI) and healthy controls. We show that the bacteriome was distinctly altered in patients by their respective urinary disorder. IC was characterized by a distinct prevalence of the genus Lactobacillus, while OAB was characterized by the genus Bacteroides, and UTI was characterized by Comamonas. IC, OAB, and UTI all also had significantly differed virome profiles from healthy individuals. In particular, we found that Lactobacillus phages were significantly associated with IC and Corynebacterium virus was associated with UTI samples, meanwhile no particular virus was correlated with OAB samples. Overall, we show that changes in the urinary microbiome are associated with incidence and spectrum of urinary diseases. These findings could lead to new microbiome modalities of treatment.

ContributorsBains, Ajeet (Author) / Lim, Efrem (Thesis director) / Zhu, Qiyun (Committee member) / Kaelin, Emily (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148016-Thumbnail Image.png
Description

The microbiome and the immune system are known to work in conjunction to modulate the clearance of pathogens and tolerance of beneficial microbes. A growing area of research seeks to study the potential extent of the involvement of the microbiome in modulating and supporting the immune system during acute allograft

The microbiome and the immune system are known to work in conjunction to modulate the clearance of pathogens and tolerance of beneficial microbes. A growing area of research seeks to study the potential extent of the involvement of the microbiome in modulating and supporting the immune system during acute allograft rejection. It has been hypothesized that the localized microbiota in each organ produce metabolites that instigate inflammatory immune responses, but whether microbiota interactions precipitate acute allograft rejection is unknown. Therefore, this study focuses on microbiome shifts in the gut and kidney after inducing acute renal transplant rejection in order to implicate gut dysbiosis as a precursor or supporter of allograft rejection. This study also subsequently explores the use of an immune-modulating protein in order to determine differences in the outcome of transplant rejection and potential differences in intestinal microbial load. This experiment sought to induce rejection in BALB/c mice through the use of C57BL/6 mouse renal slivers. Microbiome abundance was analyzed in all experimental groups. Understanding the role of the microbiome in transplant rejection has vast clinical implications and has the potential to enhance pre- and post-operative treatment, and immune management and quality of life following organ transplant.

ContributorsKokott, Kristiana Tara (Author) / Lim, Efrem (Thesis director) / Lucas, Alexandra (Committee member) / School of International Letters and Cultures (Contributor) / School of Life Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

The microbiome and virome are known to interact within the human body which in turn modulates the health and disease of an individual. While these interactions have been largely studied in bodily sites such as the gastrointestinal tract, the microbiome and virome of the female genital tract (FGT) remains largely

The microbiome and virome are known to interact within the human body which in turn modulates the health and disease of an individual. While these interactions have been largely studied in bodily sites such as the gastrointestinal tract, the microbiome and virome of the female genital tract (FGT) remains largely understudied. Within the virome exists DNA and RNA viruses which are known to infect both eukaryotes and prokaryotes. While existing virome research within the FGT has focused largely on eukaryote infecting viruses, a large proportion of the virome consists of uncharacterized bacteriophages known as “dark matter”. Due to the lack of a specific gene marker for viruses, which is essential in qPCR quantification of other populations such as bacteria, determination of viral abundance and virome characterization has been limited. However, the staining of viral DNA has been found effective in visualizing and enumerating virus-like particles within various specimens. In this study, we seek to determine viral abundance within the FGT utilizing SYBR Gold nucleic acid stain to visualize VLP present within a cohort of cervicovaginal lavage (CVL) samples. Given these results we intend to draw conclusions regarding the interactions between the FGT virome and viral abundance as well as sexual-reproductive health. Understanding the complex relationship of the virome within the female reproductive tract is likely to have remarkable clinical implications and has the potential to progress both the diagnostic and treatment aspects of female sexual and reproductive health.

ContributorsFredenberg, Mara (Author) / Lim, Efrem (Thesis director) / Kaelin, Emily (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of International Letters and Cultures (Contributor)
Created2023-05
Description

Humans and their microbiota are in a symbiotic relationship. It is known that microbiale residents within and on human bodies have the potential to impact host physiology in both healthy and disease states. To date, little is known about the potential influence of the gut microbiome on the onset of

Humans and their microbiota are in a symbiotic relationship. It is known that microbiale residents within and on human bodies have the potential to impact host physiology in both healthy and disease states. To date, little is known about the potential influence of the gut microbiome on the onset of nausea symptoms among cancer patients undergoing chemotherapy treatment. Chemotherapy-induced nausea (CIN) is a serious and common side effect. The CIN presentation is often coupled with other symptoms such as fatigue, sleep disturbance, depression, and anxiety. These symptoms both on an individual and collective level, cause negative impacts on patients’ health outcome as they challenge patients’ ability to tolerate and comply with chemotherapy. To understand the association between gut microbiome and CIN, we applied 16S rRNA amplicon sequencing to characterize the gut microbiome of breast cancer patients who reported nausea symptoms and those who reported no nausea symptoms. We hypothesize that the gut microbiome of patients who reported nausea symptoms is distinct from patients who reported no nausea. Our findings support this hypothesis, as the gut microbiome of nausea case was distinct from the no nausea cases. Specifically, we observed decreased abundance of Bacteroidetes in patients who reported nausea, while patients who reported no CIN had constant or increased abundance of Bacteroidetes. Overall, we showed that changes in the gut microbiota have an association with the occurrence of CIN symptoms among breast cancer patients receiving chemotherapy. These findings provide preliminary data for extensive research on the role of gut microbiome in CIN in the future.

ContributorsXing, Zhu (Author) / Zhu, Qiyun (Thesis director) / Singh, Komal (Committee member) / Morocho, Henry (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of Human Evolution & Social Change (Contributor)
Created2023-05
166174-Thumbnail Image.png
Description

Tropical peatlands play a critical role in global carbon storage and greenhouse gas flux, yet the role of microbial communities in these ecosystems remains poorly understood. Methane-oxidizing bacteria (MOB) are considered an efficient biological filter for methane and can mitigate its release into the atmosphere, facilitating an ecosystem’s capacity to

Tropical peatlands play a critical role in global carbon storage and greenhouse gas flux, yet the role of microbial communities in these ecosystems remains poorly understood. Methane-oxidizing bacteria (MOB) are considered an efficient biological filter for methane and can mitigate its release into the atmosphere, facilitating an ecosystem’s capacity to become a net sink. Prokaryotic gene amplicon surveys targeting a unique biomarker instead of a universal one (i.e., 16S rRNA) can reveal a more comprehensive analysis of microbial communities with ecological functions (i.e., methanotrophy). The alpha subunit of particulate methane monooxygenase (pmoA) is commonly targeted as a phylogenetic biomarker for both aerobic and anaerobic MOB. Here, we tested three different primer sets and investigated their ability to assess methanotrophic diversity across three biogeochemically distinct tropical peatland sites in the Pastaza-Marañón foreland basin (PMFB) in western Amazonia. The results showed that sequencing using 16S rRNA and pmoA genes revealed differences in MOB taxonomic identification in 21 tropical peat soils. Beta diversity analysis of pmoA genes suggests that site location is not the main driver of differences in MOB community makeup. This work offers insight into the strengths and weaknesses of targeted gene amplicon surveys using 16S and pmoA from tropical peat soils as a case study.

ContributorsBrzezinski, Hannah (Author) / Cadillo-Quiroz, Hinsby (Thesis director) / Wojciechowski, Martin (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2022-05
166419-Thumbnail Image.png
Description

Obesity increases the risk for colorectal cancer. In mice, a pro-obesity high-fat-diet (HFD) leads to an intestinal phenotype characterized by enhanced proliferation, numbers, function and tumor-initiating capacity of stem cells, the cell-of-origin for many intestinal cancers. This phenotype is driven by a lipid metabolism program facilitated by an intrinsic Peroxisome

Obesity increases the risk for colorectal cancer. In mice, a pro-obesity high-fat-diet (HFD) leads to an intestinal phenotype characterized by enhanced proliferation, numbers, function and tumor-initiating capacity of stem cells, the cell-of-origin for many intestinal cancers. This phenotype is driven by a lipid metabolism program facilitated by an intrinsic Peroxisome Proliferator-Activated Receptor/Fatty Acid Oxidation (PPAR/FAO) axis that senses and utilizes cellular lipids. However, the microbiome is a known regulator of lipid metabolism in the gut, but little is understood about how the gut commensals affect access to the lipids and alter stem cell function. Here, we use the long term HFD-fed mouse model to analyze the phenotypic changes in the intestinal stem cells (ISCs) after depletion of the gut microbiota. We find that the loss of the gut microbiome after four weeks of antibiotic treatment imposes significant changes in ISC function leading to reduced HFD ISC regenerative potential. These results indicate that the gut microbiome plays a crucial role in the lipid metabolic process which regulates and maintains the HFD ISC phenotype, and further suggests that the gut microbiome may augment the diet-induced tumor initiating capacity by altering the stem cell function.

ContributorsSantos Molina, Pablo (Author) / Mana, Miyeko (Thesis director) / Whisner, Corrie (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / Historical, Philosophical & Religious Studies, Sch (Contributor)
Created2022-05
Description
The oral microbiome is home to some of the most diverse and vital bacteria. It is important to understand how it works in its home environment and in laboratory settings to see if any discrepancies come from the different settings. It is also important to see how different bacteria interact

The oral microbiome is home to some of the most diverse and vital bacteria. It is important to understand how it works in its home environment and in laboratory settings to see if any discrepancies come from the different settings. It is also important to see how different bacteria interact with each other to either support or hinder different functions of all the bacteria.
ContributorsAftab, Tanya (Author) / Shrivastava, Abhishek (Thesis director) / Muralinath, Maneesha (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2024-05