Matching Items (5)
Filtering by

Clear all filters

153544-Thumbnail Image.png
Description
The electric power system is one of the largest, most complicated, and most important cyber-physical systems in the world. The link between the cyber and physical level is the Supervisory Control and Data Acquisition (SCADA) systems and Energy Management Systems (EMS). Their functions include monitoring the real-time system operation

The electric power system is one of the largest, most complicated, and most important cyber-physical systems in the world. The link between the cyber and physical level is the Supervisory Control and Data Acquisition (SCADA) systems and Energy Management Systems (EMS). Their functions include monitoring the real-time system operation through state estimation (SE), controlling the system to operate reliably, and optimizing the system operation efficiency. The SCADA acquires the noisy measurements, such as voltage angle and magnitude, line power flows, and line current magnitude, from the remote terminal units (RTUs). These raw data are firstly sent to the SE, which filters all the noisy data and derives the best estimate of the system state. Then the estimated states are used for other EMS functions, such as contingency analysis, optimal power flow, etc.

In the existing state estimation process, there is no defense mechanism for any malicious attacks. Once the communication channel between the SCADA and RTUs is hijacked by the attacker, the attacker can perform a man-in-middle attack and send data of its choice. The only step that can possibly detect the attack during the state estimation process is the bad data detector. Unfortunately, even the bad data detector is unable to detect a certain type of attack, known as the false data injection (FDI) attacks.

Diagnosing the physical consequences of such attacks, therefore, is very important to understand system stability. In this thesis, theoretical general attack models for AC and DC attacks are given and an optimization problem for the worst-case overload attack is formulated. Furthermore, physical consequences of FDI attacks, based on both DC and AC model, are addressed. Various scenarios with different attack targets and system configurations are simulated. The details of the research, results obtained and conclusions drawn are presented in this document.
ContributorsLiang, Jingwen (Author) / Sankar, Lalitha (Thesis advisor) / Kosut, Oliver (Thesis advisor) / Hedman, Kory (Committee member) / Arizona State University (Publisher)
Created2015
153184-Thumbnail Image.png
Description
This thesis addresses the issue of making an economic case for bulk energy storage in the Arizona bulk power system. Pumped hydro energy storage (PHES) is used in this study. Bulk energy storage has often been suggested for large scale electric power systems in order to levelize load (store energy

This thesis addresses the issue of making an economic case for bulk energy storage in the Arizona bulk power system. Pumped hydro energy storage (PHES) is used in this study. Bulk energy storage has often been suggested for large scale electric power systems in order to levelize load (store energy when it is inexpensive [energy demand is low] and discharge energy when it is expensive [energy demand is high]). It also has the potential to provide opportunities to avoid transmission and generation expansion, and provide for generation reserve margins. As the level of renewable energy resources increases, the uncertainty and variability of wind and solar resources may be improved by bulk energy storage technologies.

For this study, the MATLab software platform is used, a mathematical based modeling language, optimization solvers (specifically Gurobi), and a power flow solver (PowerWorld) are used to simulate an economic dispatch problem that includes energy storage and transmission losses. A program is created which utilizes quadratic programming to analyze various cases using a 2010 summer peak load from the Arizona portion of the Western Electricity Coordinating Council (WECC) system. Actual data from industry are used in this test bed. In this thesis, the full capabilities of Gurobi are not utilized (e.g., integer variables, binary variables). However, the formulation shown here does create a platform such that future, more sophisticated modeling may readily be incorporated.

The developed software is used to assess the Arizona test bed with a low level of energy storage to study how the storage power limit effects several optimization outputs such as the system wide operating costs. Large levels of energy storage are then added to see how high level energy storage affects peak shaving, load factor, and other system applications. Finally, various constraint relaxations are made to analyze why the applications tested eventually approach a constant value. This research illustrates the use of energy storage which helps minimize the system wide generator operating cost by "shaving" energy off of the peak demand.

The thesis builds on the work of another recent researcher with the objectives of strengthening the assumptions used, checking the solutions obtained, utilizing higher level simulation languages to affirm results, and expanding the results and conclusions.

One important point not fully discussed in the present thesis is the impact of efficiency in the pumped hydro cycle. The efficiency of the cycle for modern units is estimated at higher than 90%. Inclusion of pumped hydro losses is relegated to future work.
ContributorsDixon, William Jesse J (Author) / Heydt, Gerald T (Thesis advisor) / Hedman, Kory W (Committee member) / Karady, George G. (Committee member) / Arizona State University (Publisher)
Created2014
153914-Thumbnail Image.png
Description
The large distributed electric power system is a hierarchical network involving the

transportation of power from the sources of power generation via an intermediate

densely connected transmission network to a large distribution network of end-users

at the lowest level of the hierarchy. At each level of the hierarchy (generation/ trans-

mission/ distribution), the system

The large distributed electric power system is a hierarchical network involving the

transportation of power from the sources of power generation via an intermediate

densely connected transmission network to a large distribution network of end-users

at the lowest level of the hierarchy. At each level of the hierarchy (generation/ trans-

mission/ distribution), the system is managed and monitored with a combination of

(a) supervisory control and data acquisition (SCADA); and (b) energy management

systems (EMSs) that process the collected data and make control and actuation de-

cisions using the collected data. However, at all levels of the hierarchy, both SCADA

and EMSs are vulnerable to cyber attacks. Furthermore, given the criticality of the

electric power infrastructure, cyber attacks can have severe economic and social con-

sequences.

This thesis focuses on cyber attacks on SCADA and EMS at the transmission

level of the electric power system. The goal is to study the consequences of three

classes of cyber attacks that can change topology data. These classes include: (i)

unobservable state-preserving cyber attacks that only change the topology data; (ii)

unobservable state-and-topology cyber-physical attacks that change both states and

topology data to enable a coordinated physical and cyber attack; and (iii) topology-

targeted man-in-the-middle (MitM) communication attacks that alter topology data

shared during inter-EMS communication. Specically, attack class (i) and (ii) focus on

the unobservable attacks on single regional EMS while class (iii) focuses on the MitM

attacks on communication links between regional EMSs. For each class of attacks,

the theoretical attack model and the implementation of attacks are provided, and the

worst-case attack and its consequences are exhaustively studied. In particularly, for

class (ii), a two-stage optimization problem is introduced to study worst-case attacks

that can cause a physical line over

ow that is unobservable in the cyber layer. The long-term implication and the system anomalies are demonstrated via simulation.

For attack classes (i) and (ii), both mathematical and experimental analyses sug-

gest that these unobservable attacks can be limited or even detected with resiliency

mechanisms including load monitoring, anomalous re-dispatches checking, and his-

torical data comparison. For attack class (iii), countermeasures including anomalous

tie-line interchange verication, anomalous re-dispatch alarms, and external contin-

gency lists sharing are needed to thwart such attacks.
ContributorsZhang, Jiazi (Author) / Sankar, Lalitha (Thesis advisor) / Hedman, Kory (Committee member) / Kosut, Oliver (Committee member) / Arizona State University (Publisher)
Created2015
149306-Thumbnail Image.png
Description
Many methods have been proposed to estimate power system small signal stability, for either analysis or control, through identification of modal frequencies and their damping levels. Generally, estimation methods have been employed to assess small signal stability from collected field measurements. However, the challenge to using these methods in assessing

Many methods have been proposed to estimate power system small signal stability, for either analysis or control, through identification of modal frequencies and their damping levels. Generally, estimation methods have been employed to assess small signal stability from collected field measurements. However, the challenge to using these methods in assessing field measurements is their ability to accurately estimate stability in the presence of noise. In this thesis a new method is developed which estimates the modal content of simulated and actual field measurements using orthogonal polynomials and the results are compared to other commonly used estimators. This new method estimates oscillatory performance by fitting an associate Hermite polynomial to time domain data and extrapolating its spectrum to identify small signal power system frequencies. Once the frequencies are identified, damping assessment is performed using a modified sliding window technique with the use of linear prediction (LP). Once the entire assessment is complete the measurements can be judged to be stable or unstable. Collectively, this new technique is known as the associate Hermite expansion (AHE) algorithm. Validation of the AHE method versus results from four other spectral estimators demonstrates the method's accuracy and modal estimation ability with and without the presence of noise. A Prony analysis, a Yule-Walker autoregressive algorithm, a second sliding window estimator and the Hilbert-Huang Transform method are used in comparative assessments in support of this thesis. Results from simulated and actual field measurements are used in the comparisons, as well as artificially generated simple signals. A search for actual field testing results performed by a utility was undertaken and a request was made to obtain the measurements of a brake insertion test. Comparison results show that the AHE method is accurate as compared to the other commonly used spectral estimators and its predictive capability exceeded the other estimators in the presence of Gaussian noise. As a result, the AHE method could be employed in areas including operations and planning analysis, post-mortem analysis, power system damping scheme design and other analysis areas.
ContributorsKokanos, Barrie Lee (Author) / Karady, George G. (Thesis advisor) / Heydt, Gerald (Committee member) / Farmer, Richard G (Committee member) / Ayyanar, Raja (Committee member) / Karam, Lina (Committee member) / Arizona State University (Publisher)
Created2010
147972-Thumbnail Image.png
Description

Lossy compression is a form of compression that slightly degrades a signal in ways that are ideally not detectable to the human ear. This is opposite to lossless compression, in which the sample is not degraded at all. While lossless compression may seem like the best option, lossy compression, which

Lossy compression is a form of compression that slightly degrades a signal in ways that are ideally not detectable to the human ear. This is opposite to lossless compression, in which the sample is not degraded at all. While lossless compression may seem like the best option, lossy compression, which is used in most audio and video, reduces transmission time and results in much smaller file sizes. However, this compression can affect quality if it goes too far. The more compression there is on a waveform, the more degradation there is, and once a file is lossy compressed, this process is not reversible. This project will observe the degradation of an audio signal after the application of Singular Value Decomposition compression, a lossy compression that eliminates singular values from a signal’s matrix.

ContributorsHirte, Amanda (Author) / Kosut, Oliver (Thesis director) / Bliss, Daniel (Committee member) / Electrical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05