Matching Items (2)

Filtering by

Clear all filters

150311-Thumbnail Image.png

Characterization of HgCdTe and HgCdSe materials for third generation infrared detectors

Description

HgCdTe is the dominant material currently in use for infrared (IR) focal-plane-array (FPA) technology. In this dissertation, transmission electron microscopy (TEM) was used for the characterization of epitaxial HgCdTe epilayers

HgCdTe is the dominant material currently in use for infrared (IR) focal-plane-array (FPA) technology. In this dissertation, transmission electron microscopy (TEM) was used for the characterization of epitaxial HgCdTe epilayers and HgCdTe-based devices. The microstructure of CdTe surface passivation layers deposited either by hot-wall epitaxy (HWE) or molecular beam epitaxy (MBE) on HgCdTe heterostructures was evaluated. The as-deposited CdTe passivation layers were polycrystalline and columnar. The CdTe grains were larger and more irregular when deposited by HWE, whereas those deposited by MBE were generally well-textured with mostly vertical grain boundaries. Observations and measurements using several TEM techniques showed that the CdTe/HgCdTe interface became considerably more abrupt after annealing, and the crystallinity of the CdTe layer was also improved. The microstructure and compositional profiles of CdTe(211)B/ZnTe/Si(211) heterostructures grown by MBE was investigated. Many inclined {111}-type stacking faults were present throughout the thin ZnTe layer, terminating near the point of initiation of CdTe growth. A rotation angle of about 3.5° was observed between lattice planes of the Si substrate and the final CdTe epilayer. Lattice parameter measurement and elemental profiles indicated that some local intermixing of Zn and Cd had taken place. The average widths of the ZnTe layer and the (Cd, Zn)Te transition region were found to be roughly 6.5 nm and 3.5 nm, respectively. Initial observations of CdTe(211)B/GaAs(211) heterostructures indicated much reduced defect densities near the vicinity of the substrate and within the CdTe epilayers. HgCdTe epilayers grown on CdTe(211)B/GaAs(211) composite substrate were generally of high quality, despite the presence of precipitates at the HgCdTe/CdTe interface. The microstructure of HgCdSe thin films grown by MBE on ZnTe/Si(112) and GaSb(112) substrates were investigated. The quality of the HgCdSe growth was dependent on the growth temperature and materials flux, independent of the substrate. The materials grown at 100°C were generally of high quality, while those grown at 140°C had {111}-type stacking defects and high dislocation densities. For epitaxial growth of HgCdSe on GaSb substrates, better preparation of the GaSb buffer layer will be essential in order to ensure that high-quality HgCdSe can be grown.

Contributors

Agent

Created

Date Created
  • 2011

158158-Thumbnail Image.png

Transmission Electron Microscopy Characterization of Photovoltaic Semiconductor Materials

Description

The research of this dissertation has primarily involved using transmission electron microscopy (TEM) techniques to study several semiconductor materials considered promising for future photovoltaic device applications.

Layers of gallium phosphide (GaP)

The research of this dissertation has primarily involved using transmission electron microscopy (TEM) techniques to study several semiconductor materials considered promising for future photovoltaic device applications.

Layers of gallium phosphide (GaP) grown on silicon (Si) substrates were characterized by TEM and aberration-corrected scanning transmission electron microscopy (AC-STEM). High defect densities were observed for samples with GaP layer thicknesses 250nm and above. Anti-phase boundaries (APBs) within the GaP layers were observed at interfaces with the Si surfaces which were neither atomically flat nor abrupt, contradicting conventional understanding of APB formation.

Microcrystalline-Si (μc-Si) layers grown on crystalline-Si (c-Si) substrates were investigated. Without nanoparticle seeding, an undesired amorphous-Si (a-Si) layer grew below the μc-Si layer. With seeding, the undesired a-Si layer grew above the μc-Si layer, but μc-Si growth proceeded immediately at the c-Si surface. Ellipsometry measurements of percent crystallinity did not match TEM images, but qualitative agreement was found between TEM results and Ultraviolet Raman spectroscopy.

TEM and Xray spectroscopy were used to study metal-induced crystallization and layer exchange for aluminum/ germanium (Al/Ge). Only two samples definitively exhibited both Ge crystallization and layer exchange, and neither process was complete in either sample. The results were finally considered as inconclusive since no reliable path towards layer exchange and crystallization was established.

Plan-view TEM images of indium arsenide (InAs) quantum dots with gallium arsenide antimonide (GaAsSb) spacer layers revealed the termination of some threading dislocations in a sample with spacer-layer thicknesses of 2nm, while a sample with 15-nm-thick spacer layers showed a dense, cross-hatched pattern. Cross-sectional TEM images of samples with 5-nm and 10-nm spacer-layer thicknesses showed less layer undulation in the latter sample. These observations supported photoluminescence (PL) and Xray diffraction (XRD) results, which indicated that GaAsSb spacer layers with 10-nm thickness yielded the highest quality material for photovoltaic device applications.

a-Si/c-Si samples treated by hydrogen plasma were investigated using high-resolution TEM. No obvious structural differences were observed that would account for the large differences measured in minority carrier lifetimes. This key result suggested that other factors such as point defects, hydrogen content, or interface charge must be affecting the lifetimes.

Contributors

Agent

Created

Date Created
  • 2020