Matching Items (1)

147857-Thumbnail Image.png

A Determination of the Sequence-Dependent Kinetic Constants of Uracil-DNA Glycosylase

Description

Mutations in the DNA of somatic cells, resulting from inaccuracies in DNA<br/>replication or exposure to harsh conditions (ionizing radiation, carcinogens), may be<br/>loss-of-function mutations, and the compounding of these mutations can

Mutations in the DNA of somatic cells, resulting from inaccuracies in DNA<br/>replication or exposure to harsh conditions (ionizing radiation, carcinogens), may be<br/>loss-of-function mutations, and the compounding of these mutations can lead to cancer.<br/>Such mutations can come in the form of thymine dimers, N-𝛽 glycosyl bond hydrolysis,<br/>oxidation by hydrogen peroxide or other radicals, and deamination of cytosine to uracil.<br/>However, many cells possess the machinery to counteract the deleterious effects of<br/>such mutations. While eukaryotic DNA repair enzymes decrease the incidence of<br/>mutations from 1 mistake per 10^7 nucleotides to 1 mistake per 10^9 nucleotides, these<br/>mutations, however sparse, are problematic. Of particular interest is a mutation in which<br/>uracil is incorporated into DNA, either by spontaneous deamination of cysteine or<br/>misincorporation. Such mutations occur about one in every 107 cytidine residues in 24<br/>hours. DNA uracil glycosylase (UDG) recognizes these mutations and cleaves the<br/>glycosidic bond, creating an abasic site. However, the rate of this form of DNA repair<br/>varies, depending on the nucleotides that surround the uracil. Most enzyme-DNA<br/>interactions depend on the sequence of DNA (which may change the duplex twist),<br/>even if they only bind to the sugar-phosphate backbone. In the mechanism of uracil<br/>excision, UDG flips the uracil out of the DNA double helix, and this step may be<br/>impaired by base pairs that neighbor the uracil. The deformability of certain regions of<br/>DNA may facilitate this step in the mechanism, causing these regions to be less<br/>mutable. In DNA, base stacking, a form of van der Waals forces between the aromatic<br/>nucleic bases, may make these uracil inclusions more difficult to excise. These regions,<br/>stabilized by base stacking interactions, may be less susceptible to repair by<br/>glycosylases such as UDG, and thus, more prone to mutation.

Contributors

Agent

Created

Date Created
  • 2021-05