Matching Items (5)
Filtering by

Clear all filters

150063-Thumbnail Image.png
Description
Systemic lupus erytematosus (SLE) is an autoimmune disease where the immune system is reactive to self antigens resulting in manifestations like glomerulonephritis and arthritis. The immune system also affects the central nervous system (known as CNS-SLE) leading to neuropsychiatric manifestations such as depression, cognitive impairment, psychosis and seizures.

Systemic lupus erytematosus (SLE) is an autoimmune disease where the immune system is reactive to self antigens resulting in manifestations like glomerulonephritis and arthritis. The immune system also affects the central nervous system (known as CNS-SLE) leading to neuropsychiatric manifestations such as depression, cognitive impairment, psychosis and seizures. A subset of pathogenic brain-reactive autoantibodies (BRAA) is hypothesized to bind to integral membrane brain proteins, affecting their function, leading to CNS-SLE. I have tested this BRAA hypothesis, using our lupus-mouse model the MRL/lpr mice, and have found it to be a reasonable explanation for some of the manifestations of CNS-SLE. Even when the MRL/lpr had a reduced autoimmune phenotype, their low BRAA sera levels correlated with CNS involvement. The correlation existed between BRAA levels to integral membrane protein and depressive-like behavior. These results were the first to show a correlation between behavioral changes and BRAA levels from brain membrane antigen as oppose to cultured neuronal cells. More accurate means of predicting and diagnosing lupus and CNS-SLE is necessary. Using microarray technology I was able to determine peptide sets that could be predictive and diagnostic of lupus and each specific CNS manifestation. To knowledge no test currently exists that can effectively diagnose lupus and distinguish between each CNS manifestations. Using the peptide sets, I was able to determine possible natural protein biomarkers for each set as well as for five monoclonal BRAA from one MRL/lpr. These biomarkers can provide specific targets for therapy depending on the manifestation. It was necessary to investigate how these BRAA enter the brain. I hypothesized that substance P plays a role in altering the blood-brain barrier (BBB) allowing these BRAA to enter and affect brain function, when bound to its neurokinin-1 receptor (NK-1R). Western blotting results revealed an increase in the levels of NK-1R in the brain of the MRL/lpr compared to the MRL/mp. These MRL/lpr with increased levels of both NK-1R and BRAA displayed CNS dysfunction. Together, these results demonstrate that NK-1R may play a role in CNS manifestations. Overall, the research conducted here, add to the role that BRAA are playing in CNS-lupus.
ContributorsWilliams, Stephanie (Author) / Hoffman, Steven A (Thesis advisor) / Conrad, Cheryl (Committee member) / Chen, Julian (Committee member) / Orchinik, Miles (Committee member) / Arizona State University (Publisher)
Created2011
156075-Thumbnail Image.png
Description
Food is an essential driver of animal behavior. For social organisms, the acquisition of food guides interactions with the environment and with group-mates. Studies have focused on how social individuals find and choose food sources, and share both food and information with group-mates. However, it is often not clear how

Food is an essential driver of animal behavior. For social organisms, the acquisition of food guides interactions with the environment and with group-mates. Studies have focused on how social individuals find and choose food sources, and share both food and information with group-mates. However, it is often not clear how experiences throughout an individual's life influence such interactions. The core question of this thesis is how individuals’ experience contributes to within-caste behavioral variation in a social group. I investigate the effects of individual history, including physical injury and food-related experience, on individuals' social food sharing behavior, responses to food-related stimuli, and the associated neural biogenic amine signaling pathways. I use the eusocial honey bee (Apis mellifera) system, one in which individuals exhibit a high degree of plasticity in responses to environmental stimuli and there is a richness of communicatory pathways for food-related information. Foraging exposes honey bees to aversive experiences such as predation, con-specific competition, and environmental toxins. I show that foraging experience changes individuals' response thresholds to sucrose, a main component of adults’ diets, depending on whether foraging conditions are benign or aversive. Bodily injury is demonstrated to reduce individuals' appetitive responses to new, potentially food-predictive odors. Aversive conditions also impact an individual's social food sharing behavior; mouth-to-mouse trophallaxis with particular groupmates is modulated by aversive foraging conditions both for foragers who directly experienced these conditions and non-foragers who were influenced via social contact with foragers. Although the mechanisms underlying these behavioral changes have yet to be resolved, my results implicate biogenic amine signaling pathways as a potential component. Serotonin and octopamine concentrations are shown to undergo long-term change due to distinct foraging experiences. My work serves to highlight the malleability of a social individual's food-related behavior, suggesting that environmental conditions shape how individuals respond to food and share information with group-mates. This thesis contributes to a deeper understanding of inter-individual variation in animal behavior.
ContributorsFinkelstein, Abigail (Author) / Amdam, Gro V (Thesis advisor) / Conrad, Cheryl (Committee member) / Smith, Brian (Committee member) / Neisewander, Janet (Committee member) / Bimonte-Nelson, Heather A. (Committee member) / Arizona State University (Publisher)
Created2017
156942-Thumbnail Image.png
Description
Estrogen-containing hormone therapy (HT) is approved for treatment of symptoms associated with menopause by the Food and Drug Administration. A common estrogen used in HT is 17β-estradiol (E2). Rodent models of menopause, and some clinical work as well, suggest a cognitively-beneficial role of E2. However, as of the 2017 statement

Estrogen-containing hormone therapy (HT) is approved for treatment of symptoms associated with menopause by the Food and Drug Administration. A common estrogen used in HT is 17β-estradiol (E2). Rodent models of menopause, and some clinical work as well, suggest a cognitively-beneficial role of E2. However, as of the 2017 statement released by the North American Menopause Society, HT is not currently advised for use as cognitive therapy in healthy, menopausal women, given that the data so far from existing clinical studies are not yet definitive. Indeed, the delivery of E2 treatment can be optimized to yield more consistent results on cognitive function, particularly considering that exogenously administered E2 gets rapidly metabolized and cleared from the body. Further, E2-containing HT must include a progestogen if prescribed to women with a uterus to oppose its undesired uterine stimulating effects, such as increased endometrial hyperplasia and cancer risks. Studies have shown that the addition of a progestogen to E2 treatment can attenuate the effects of E2 on cognition and brain variables associated with cognitive function. Thus, a brain-specific delivery platform of E2 treatment that would minimize the hormone’s effects in the periphery while maintaining the beneficial cognitive effects is desirable. To achieve this goal, my dissertation work bridged two distinct scientific fields – behavioral neuroendocrinology and polymeric drug delivery – with the overarching aim of targeting the delivery of E2 to the brain to achieve maximal cognitively-beneficial effects with minimal undesired uterine stimulation. This aim was addressed via three distinct delivery strategies: 1) combining E2 with a cognitively-beneficial progestogen, 2) encapsulating E2 in polymeric nanoparticles, and 3) solubilizing E2 using cyclodextrins for intranasal administration. Findings revealed that although all E2-containing treatments increased uterine horn weights, a marker of uterine stimulation, in middle-aged ovariectomized rats, some E2 treatment formulations yielded memory improvements, others were neutral in their effects on memory, and some impaired memory. Together, data from this dissertation set the stage for targeted E2 delivery research to optimize the cognitive therapeutic effects of E2 in the context of menopause while minimizing peripheral burden, leading to translationally relevant clinical implications for women’s health.
ContributorsPrakapenka, Alesia (Author) / Bimonte-Nelson, Heather A. (Thesis advisor) / Conrad, Cheryl (Committee member) / Stabenfeldt, Sarah (Committee member) / Sirianni, Rachael (Committee member) / Arizona State University (Publisher)
Created2018
151807-Thumbnail Image.png
Description
The maternal separation (MS) paradigm is an animal model of early life stress. Animals subjected to MS during the first two weeks of life display altered behavioral and neuroendocrinological stress responses as adults. MS also produces altered responsiveness to and self-administration (SA) of various drugs of abuse including cocaine, ethanol,

The maternal separation (MS) paradigm is an animal model of early life stress. Animals subjected to MS during the first two weeks of life display altered behavioral and neuroendocrinological stress responses as adults. MS also produces altered responsiveness to and self-administration (SA) of various drugs of abuse including cocaine, ethanol, opioids, and amphetamine. Methamphetamine (METH) causes great harm to both the individual user and to society; yet, no studies have examined the effects of MS on METH SA. This study was performed to examine the effects of MS on the acquisition of METH SA, extinction, and reinstatement of METH-seeking behavior in adulthood. Given the known influence of early life stress and drug exposure on epigenetic processes, group differences in levels of the epigenetic marker methyl CpG binding protein 2 (MeCP2) in the nucleus accumbens (NAc) core were also investigated. Long-Evans pups and dams were separated on postnatal days (PND) 2-14 for either 180 (MS180) or 15 min (MS15). Male offspring were allowed to acquire METH SA (0.05 mg/kg/infusion) in 15 2-hr daily sessions starting at PND67, followed by extinction training and cue-induced reinstatement of METH-seeking behavior. Rats were then assessed for MeCP2 levels in the NAc core by immunohistochemistry. The MS180 group self-administered significantly more METH and acquired SA earlier than the MS15 group. No group differences in extinction or cue-induced reinstatement were observed. MS15 rats had significantly elevated MeCP2-immunoreactive cells in the NAc core as compared to MS180 rats. Together, these data suggest that MS has lasting influences on METH SA as well as epigenetic processes in the brain reward circuitry.
ContributorsLewis, Candace (Author) / Olive, Micheal F (Thesis advisor) / Conrad, Cheryl (Committee member) / Neisewander, Janet (Committee member) / Arizona State University (Publisher)
Created2013
147801-Thumbnail Image.png
Description

Premature babies are at risk of death from immature lung development. For this reason, pregnant mothers at risk for preterm delivery are administered dexamethasone (DEX), a synthetic glucocorticoid that promotes fetal lung development. However, exposure to DEX in utero is associated with low birth weight and cardiovascular development pathologies. Moreover,

Premature babies are at risk of death from immature lung development. For this reason, pregnant mothers at risk for preterm delivery are administered dexamethasone (DEX), a synthetic glucocorticoid that promotes fetal lung development. However, exposure to DEX in utero is associated with low birth weight and cardiovascular development pathologies. Moreover, our lab found that DEX administration in-utero leads to a sex-specific increase in stress-induced tachycardia in female, but not male offspring. This project seeks to expand on this preliminary finding of the heart by examining local effectors of activity from the sympathetic system (tyrosine hydroxylase and catechol-o-methyltransferase). Tyrosine hydroxylase was measured as it catalyzes the rate limiting step of norepinephrine synthesis while catechol-O- methyltransferase was studied as it catalyzes the degradation of norepinephrine. Acetylcholinesterase was used to measure parasympathetic activity as it catalyzes the degradation of the primary neurotransmitter of the parasympathetic nervous system, acetylcholine. Analyses of sympathetic as well as parasympathetic activity were done to determine influences of in-utero DEX exposure on autonomic regulation in adulthood. Pregnant rats were administered DEX (0.4 mg/kg, i.p.) or vehicle (20% w/v 2-hydroxypropyl ß- cyclodextran) at gestation days 18-21, with euthanasia of offspring occurring at around the time the offspring reached 13-15 weeks of age. Left ventricles and right atria were pulverized, processed and subjected to western blot analysis to determine expression of proteins of interest. Males exposed to DEX in-utero saw a decrease in tyrosine hydroxylase expression in left ventricle and right atrium when compared to vehicle control, a difference not seen with females. In addition, catechol-o-methyltransferase expression was increased in right atria from male, but not female rats. Acetylcholinesterase expression was reduced in the right atria of female, but not male rats. The present findings suggest reduced norepinephrine signaling in the heart of male, but not female DEX-exposed offspring. Given that we have previously found that female, but not male rats exhibit exaggerated stress-induced tachycardia, our current findings suggest that males possess a sex-specific compensatory mechanism allowing the heart to resist increased sympathetic signaling from the brain, one that females do not possess. The underlying mechanics of this proposed mechanism are unclear, and further investigation is needed in this subject to determine the significance of the findings from our study.

ContributorsSharma, Arpan (Author) / Conrad, Cheryl (Thesis director) / Hale, Taben (Committee member) / Department of Psychology (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05